Экологические проблемы электроэнергетики. Энергетика и экология. Энергетические ресурсы морских, океанических и термальных вод

Основная задача нашей цивилизации – не допустить перехода биосферы в состояние бифуркации. Выход из этого состояния неоднозначен. Он может дать и новые стимулы развития, как это случилось с кроманьонцами в результате неолитической катастрофы, а может привести и к полному исчезновению, как это случилось с людьми мустьерской культуры. Риск столь высок, что человечество допустить его не может. Отсюда и столь категоричная формулировка основной стратегической цели современной цивилизации.

Откуда сейчас мы получаем энергию?

Основная часть электроэнергии производится в настоящее время на тепловых электростанциях (ТЭС). Далее обычно идут гидроэлектростанции (ГЭС) и атомные электростанции (АЭС).

1) Тепловые электростанции
В большинстве стран мира доля электроэнергии, вырабатываемой на ТЭС больше 50%. В качестве топлива на ТЭС обычно используются уголь, мазут, газ, сланцы. Ископаемое топливо относится к невозобновимым ресурсам. Согласно многим оценкам угля на планете хватит на 100-300 лет, нефти на 40-80 лет, природного газа на 50-120 лет.
Коэффициент полезного действия ТЭС составляет в среднем 36-39%. Наряду с топливом ТЭС потребляет значительное количество воды. Типичная ТЭС мощностью 2 млн. кВт ежесуточно потребляет 18 000 т угля, 2500 т мазута, 150 000 м3 воды. На охлаждение отработанного пара на ТЭС используются ежесуточно 7 млн. м3 воды, что приводит к тепловому загрязнению водоема-охладителя.
Для ТЭС характерно высокое радиационное и токсичное загрязнение окружающей среды. Это обусловлено тем, что обычный уголь, его зола содержат микропримеси урана и ряда токсичных элементов в значительно больших концентрациях, чем земная кора.
При строительстве крупных ТЭС или их комплексов загрязнение еще более значительно. При этом могут возникать новые эффекты, например, обусловленные превышением скорости сжигания кислорода над скоростью его образования за счет фотосинтеза земных растений на данной территории, или вызванные увеличением концентрации углекислого газа в приземном слое.
Из ископаемых источников топлива наиболее перспективным является уголь (его запасы огромны по сравнению с запасами нефти и газа). Основные мировые запасы угля сосредоточены в России, Китае и США. При этом основное количество энергии в настоящее время вырабатывается на ТЭС за счет использования нефтепродуктов. Таким образом, структура запасов ископаемого топлива не соответствует структуре его современного потребления при производстве энергии. В перспективе – переход на новую структуру потребления ископаемого топлива (угля) вызовет значительные экологические проблемы, материальные затраты и изменения во всей промышленности. Ряд стран уже начал структурную перестройку энергетики.

2) Гидроэлектростанции
Основные достоинства ГЭС – низкая себестоимость вырабатываемой электроэнергии, быстрая окупаемость (себестоимость примерно в 4 раза ниже, а окупаемость в 3-4 раза быстрее, чем на ТЭС), высокая маневренность, что очень важно в периоды пиковых нагрузок, возможность аккумуляции энергии.
Но даже при полном использовании потенциала всех рек Земли можно обеспечить не более четверти современных потребностей человечества. В России используется менее 20 % гидроэнергетического потенциала. В развитых странах эффективность использования гидроресурсов в 2-3 раза выше, т.е. здесь у России есть определенные резервы. Однако сооружение ГЭС (особенно на равнинных реках) приводит ко многим экологическим проблемам. Водохранилища, необходимые для обеспечения равномерной работы ГЭС, вызывают изменения климата на прилегающих территориях на расстояниях до сотен километров, являются естественными накопителями загрязнений.
В водохранилищах развиваются сине-зеленые водоросли, ускоряются процессы эфтрофикации, что приводит к ухудшению качества воды, нарушает функционирование экосистем. При строительстве водохранилищ нарушаются естественные нерестилища, происходит затопление плодородных земель, изменяется уровень подземных вод.
Более перспективным является сооружение ГЭС на горных реках. Это обусловлено более высоким гидроэнергетическим потенциалом горных рек по сравнению с равнинными реками. При сооружении водохранилищ в горных районах не изымаются из землепользования большие площади плодородных земель.

3) Атомные электростанции
АЭС не вырабатывают углекислого газа, объем других загрязнений атмосферы по сравнению с ТЭС также мал. Количество радиоактивных веществ, образующихся в период эксплуатации АЭС, сравнительно невелико. В течение длительного времени АЭС представлялись как наиболее экологически чистый вид электростанций и как перспективная замена ТЭС, оказывающих влияние на глобальное потепление. Однако процесс безопасной эксплуатации АЭС еще не решен. С другой стороны, замена основной массы ТЭС на АЭС для устранения их вклада в загрязнение атмосферы в масштабе планеты не осуществима из-за огромных экономических затрат.
Чернобыльская катастрофа привела к коренному изменению отношения населения к АЭС в регионах размещения станций или возможного их строительства. Поэтому перспектива развития атомной энергетики в ближайшие годы неясна. Среди основных проблем использования АЭС можно выделить следующие.
1. Безопасность реакторов. Все современные типы реакторов ставят человечество под угрозу риска глобальной аварии, подобной Чернобыльской. Такая авария может произойти по вине конструкторов, из-за ошибки оператора или в результате террористического акта. Принцип внутренней самозащищенности активной зоны реактора в случае развития аварии по худшему сценарию с расплавлением активной зоны должен быть непреложным требованием при проектировании реакторов. Ядерная технология сложна. Потребовались годы анализа и накопленного опыта, чтобы просто осознать возможность возникновения некоторых типов аварий.
Неопределенности в отношении безопасности никогда не будут полностью разрешены заранее. Большое их количество будет обнаружено только во время эксплуатации новых реакторов.
3. Снижение эмиссии диоксида углерода. Считается, что вытеснение тепловых электростанций атомными поможет решить проблему снижения выбросов диоксида углерода, одного из главных парниковых газов, способствующих потеплению климата на планете. Однако, на самом деле, электростанции с комбинированным циклом на природном газе не только намного экономичнее, чем АЭС, но и при одних и тех же затратах достигается значительно большее снижение выбросов диоксида углерода, чем при использовании атомной энергии с учетом всего топливного цикла (потребление энергии при добыче и обогащении урана, изготовлении ядерного топлива и других затрат на «входе» и «выходе»).
4. Снятие с эксплуатации реакторов на АЭС. К 2010 г. половина из работающих в мире АЭС имела возраст 25 лет и более. После этого предполагается процедура снятия с эксплуатации реакторов. По данным Всемирной ядерной ассоциации (WNA), более 130 промышленных ядерных установок уже выведены из эксплуатации, либо ожидают этой процедуры. И во всех случаях возникает проблема утилизации радиоактивных отходов, которые надо надежно изолировать и хранить длительный срок в специальных хранилищах. Многие эксперты считают, что эти расходы могут сравняться с расходами на строительство АЭС.
5. Опасность использования АЭС для распространения ядерного оружия. Каждый реактор производит ежегодно плутоний в количестве, достаточном для создания нескольких атомных бомб. В отработавшем ядерном топливе (ОЯТ), которое регулярно выгружается из реакторов, содержится не только плутоний, но и целый набор опасных радиационных элементов. Поэтому МАГАТЭ старается держать под контролем весь цикл обращения с отработавшим ядерным топливом во всех странах, где работают АЭС.
Примитивную атомную бомбу можно сделать из отработавшего ядерного топлива любой АЭС. Если для создания бомбы необходимы сложное производство, специальное оборудование и подготовленные специалисты, то для создания так называемых грязных ядерных взрывных устройств – все намного проще, и здесь опасность очень велика. При использовании такой «самоделки» ядерного взрыва, конечно, не будет, но будет сильное радиоактивное заражение. Такие устройства террористы и экстремисты могут изготовить самостоятельно, приобретя на ядерном черном рынке необходимые расщепляющие материалы. Такой рынок, как это ни прискорбно, существует, и атомная промышленность является потенциальным поставщиком таких материалов.

Эколого-экономическая характеристика основных возобновимых и альтернативных источников энергии

Считается, что возобновимые источники энергии (ветровые, солнечные, геотермальные, волновые и др.), модульные станции на природном газе с использованием топливных элементов, утилизация сбросного тепла и отработанного пара, как и многое другое,– реальные пути защиты от изменения климата без создания новых угроз для ныне живущих и будущих поколений. Рассмотрим эти вопросы более подробно.

1) Прямое использование солнечной энергии
Мощность солнечной радиации, поглощенной атмосферой и земной поверхностью, составляют 105 ТВт (1017 Вт). Эта величина кажется огромной по сравнению с современным мировым энергопотреблением, равным 10 ТВт. Поэтому ее считают наиболее перспективным видом нетрадиционной (альтернативной) энергетики.
К основным методам преобразования солнечной энергии относятся, прежде всего, методы прямого использования солнечной энергии – фотоэлектрическое преобразование и термодинамический цикл, а также биоконверсия.
Фотоэлектрический метод преобразования солнечной энергии основан на особенностях взаимодействия полупроводниковых материалов со световым излучением. В фотоэлектрическом преобразователе свободные носители образуются в результате поглощения светового кванта полупроводником, разделение зарядов производится под действием электрического поля, возникающего внутри полупроводника. Теоретически КПД преобразователя может достигать 28%.
Низкая плотность солнечного излучения является одним из препятствий его широкого использования. Для устранения этого недостатка при конструировании фотоэлектрических преобразователей используются различного рода концентраторы излучения. Главные преимущества фотоэлектрических установок заключается в том, что они не имеют движущихся частей, их конструкция очень проста, производство – тех­нологично. К их недостаткам можно отнести разрушение полупроводникового материала от времени, зависимость эффективности работы системы от ее запыленности, необходимость разработки сложных методов очистки батарей от загрязнения. Все это ограничивает срок службы фотоэлектрических преобразователей.
Гибридные станции, состоящие из фотоэлектрических преобразователей и дизельных генераторов, уже широко используются для электроснабжения на территориях, где нет распределительных электрических сетей. Например, система такого типа обеспечивает электроэнергией жителей Кокосового острова, расположенного в Торресовом проливе.

Энергию получают из солнечной энергии методом термодинамического преобразования практически так же как из других источников. Однако такие особенности солнечного излучения как низкая мощность, суточная и сезонная изменчивость, зависимость от погодных условий, накладывают определенные ограничения на конструкцию термодинамических преобразователей.
Обычный термодинамический преобразователь солнечной энергии содержит систему улавливания солнечной радиации, которая предназначена частично скомпенсировать низкую плотность солнечного излучения; приемную систему, которая преобразует солнечную энергию в энергию теплоносителя; систему переноса теплоносителя от приемника к аккумулятору или к теплообменнику; тепловой аккумулятор, который обеспечивает смягчение зависимости от суточной изменчивости и погодных условий; теплообменники, образующие нагревательный и охладительный источники тепловой машины.
Для среднетемпературного аккумулирования (от 100 до 5500С) используются гидраты оксидов щелочноземельных металлов. Высокотемпературное аккумулирование (температура выше 5500С) осуществляется с помощью обратимых экзо-эндотермических реакций.
В настоящее время идеи термодинамического преобразования реализуются в схемах двух типов: гелиостаты башенного типа и станции с распределенным приемником энергии.
На гелиостанции башенного типа энергия от каждого гелиостата передается оптическим способом. Управление гелиостатами осуществляет ЭВМ. До 80% стоимости станции составляет стоимость гелиостатов. Система сбора и передачи энергии в установках башенного типа оказывается очень дорогой. Поэтому такие установки не получили широкого распространения. В Мексике, США, работают установки такого типа мощностью 10 Мвт.
Станции с распределенными приемниками солнечной энергии оказались более перспективными. Концентраторы параболического типа, вращающиеся вокруг оси, передают энергию трубчатым приемникам, находящимся на фокальной линии. В качестве теплоносителя обычно используется масло. Нерешенной проблемой в гелиостанциях является вопрос о длительном хранении электроэнергии. Правда следует отметить, что этот вопрос не решен не только в солнечной энергетике, но и вообще в энергетике.

Более широкому внедрению солнечной энергетики пока препятствует более высокая стоимость производства на солнечных электростанциях по сравнению с традиционными источниками энергии. Солнечная энергетика имеет особенности, которые существенно затрудняют ее широкое использование. Это, прежде всего низкая плотность потока энергии и ее непостоянство, т.к. интенсивность солнечного излучения зависит от времени года, суток и метеоусловий. Тем не менее, в настоящее время, наблюдается тенденция значительного роста, как вводимых мощностей, так и инвестиций в данную отрасль по всему миру. В 2008-2009 гг. новые инвестиции превысили половину всех инвестиций в общее производство энергии. В 2010 г. впервые прирост мощностей, основанных на возобновляемых источниках энергии, превысил ввод в действие мощностей традиционных. По показателям имеющихся мощностей и инвестиций по многим параметрам лидируют Китай, США, Германия, Индия и Бразилия. На фоне этого российская цель – 1.5 % к 2010 г. и 4.5 % ВИЭ в производстве электроэнергии к 2020 г. – выглядит очень скромно.
Кроме того, использование энергии солнца предполагает обязательное наличие накопителей электроэнергии достаточной емкости. Как правило, это обычные аккумуляторы. Поэтому, если рассматривать солнечную энергетику полного цикла (с учетом производства датчиков-преобразователей солнечной энергии и, особенно, аккумуляторных батарей), то суммарное влияние такой энергетики на загрязнение окружающего пространства оказывается не таким уж и незначительным.

2) Биоконверсия солнечной энергии
Биомасса, как источник энергии, используется с древнейших времен. В процессе фотосинтеза солнечная энергия запасается в виде химической энергии в зеленой массе растений. Запасенная в биомассе энергия может быть использована в виде пищи человеком или животными или для получения энергии в быту и производстве. В настоящее время до 15% энергии в мире производится из биомассы.
Самый древний, и еще широко применяемый, способ получения энергии из биомассы заключается в ее сжигании. В сельской местности до 85% энергии получают этим способом. Как топливо, биомасса имеет ряд преимуществ перед ископаемым топливом. Прежде всего – это возобновимый источник энергии. При сжигании биомассы выделяется в 10-20 раз меньше серы и в 3-5 раз меньше золы, чем при сжигании угля. Количество углекислого газа, выделившегося при сжигании биомассы, равно количеству углекислого газа, затраченного в процессе фотосинтеза.
Энергию биомассы можно получать из специальных сельскохозяйственных культур. Например, в субтропическом поясе России предлагается выращивать карликовые породы быстрорастущего вида папайи. С одного гектара за 6 месяцев на опытных участках получают более 5 т биомассы по сухому весу, которую можно использовать для получения биогаза. К перспективным видам относятся быстрорастущие деревья, растения, богатые углеводами, которые применяются для получения этилового спирта (например, сахарный тростник). В США разработан способ производства спирта из кукурузы, в Италии ведутся работы над разработкой способа рентабельного производства спирта из сорго. Около 200 автобусов в Стокгольме уже работают на спирте.

Широко распространенный способ получения энергии из биомассы заключается в получении биогаза путем анаэробного перебраживания. Такой газ содержит около 70% метана. Биометаногенез был открыт еще в 1776 году Вольтой, который обнаружил содержание метана в болотном газе. Биогаз позволяет использовать газовые турбины, являющиеся самыми современными средствами теплоэнергетики. Для производства биогаза используются органические отходы сельского хозяйства и промышленности. Это направление является одним из перспективных и многообещающих способов решения проблемы энергообеспечения сельских районов. Например, из 300 т сухого вещества навоза, превращенного в биогаз, выход энергии составляет около 30 т нефтяного эквивалента.
Биомассу для последующего получения биогаза, можно выращивать в водной среде, культивируя водоросли и микроводоросли. Во многих научных лабораториях, например в Лаборатории возобновляемых источников энергии МГУ им. М. В. Ломоносова, сейчас занимаются разработкой технологий выращивания микроводорослей для биоконверсии солнечной энергии.

3) Волновая энергетика
Волновая электростанция – установка, расположенная в водной среде, целью которой является получение электричества из кинетической энергии волн.
В последнее время пристальное внимание ученых и конструкторов привлекает использование различных видов энергии Мирового океана. Построены первые приливные электростанции. Разрабатываются методы использования тепловой энергии океана, связанной, например, со значительной разницей температур поверхностного и глубинного слоев океана, достигающей в тропических областях 20°С и более. В настоящее время накоплен значительный объем инструментальных измерений ветрового волнения в Мировом океане. На основе этих данных волновая климатология определяет районы с наиболее интенсивным и постоянным волнением.

Первая заявка на патент волновой электростанции была подана в Париже в 1799 г. Уже в 1890 г. была предпринята первая попытка практического использования энергии волн, хотя первая волновая электростанция мощностью 2,25 МВт вошла в коммерческую эксплуатацию только в 2008 г. в районе Агусадора (Португалия) на расстоянии 5 км от берега (рис.5.44). Проект электростанции принадлежит шотландской компании Pelamis Wave Power, которая в 2005 г. заключила контракт с португальской энергетической компанией Enersis на строительство волновой электростанции. Стоимость контракта составила 8 млн. евро. В 2009 г. волновая электростанция была введена в эксплуатацию на Оркнейских островах. В Великобритании строится волновая электростанция мощностью в 20 МВт. Строят такие электростанции и некоторые другие прибрежные государства.
В большинстве проектов волновых электростанций предполагается использовать двухступенчатую схему преобразования. На первом этапе осуществляется передача энергии от волны к телу-поглотителю и решается задача концентрирования волновой энергии. На втором этапе поглощенная энергия преобразуется в вид, удобный для потребления. Существует три основных типа проектов по извлечению волновой энергии. В первом используется метод повышения концентрации волновой энергии и превращения ее в потенциальную энергию воды. Во втором – тело с несколькими степенями свободы находится у поверхности воды. Волновые силы, действующие на тело, передают ему часть волновой энергии. Основным недостатком такого проекта является уязвимость тела, находящегося под действием волн. В третьем типе проектов, система, поглощающая энергию, находится под водой. Передача волновой энергии происходит под действием волнового давления или скорости.
В ряде волновых установок для повышения эффективности плотность волновой энергии искусственно повышается. Изменяя рельеф дна в прибрежной зоне, можно сконцентрировать морские волны по­добно линзе, фокусирующей световые волны. Если сфокусировать волны с побережья длиной в несколько километров на фронте в 500 м, то высота волны может достигнуть 30 м. Попадая в специальные сооружения, вода поднимается на высоту в 100 м. Энергия поднятой воды может быть использована для работы гидроэлектростанции, распо­ложенной на уровне океана. Волновая электростанция подобного типа используется для обеспечения электроэнергией острова Маврикий, не имеющего традиционных источников энергии.
Ряд устройств по преобразованию волновой энергии использует различные свойства волновых движений: периодические изменения уровня водной поверхности, волнового давления или волновой скорос­ти. Процент использования волновой энергии достигает 40 %. Электроэнергия передается на берег по кабелю. В Японии создан промышленный образец такой системы, имеющей 9 турбин общей мощностью в 2 МВт.
Сила, с которой волны воздействуют на сооружения в береговой зоне, достигает нескольких тонн на квадратный метр. Это силовое воздействие тоже может быть использовано для преобразования волновой энергии.
Волновая энергетика не использует ископаемое топливо, стоимость которого непрерывно растет, а запасы ограничены. Перед волновой энергетикой не стоит в острой форме проблема воздействия на окружающую среду. Однако в настоящее время производство 1 кВт электроэнергии на волновых электростанциях в 5-10 раз выше, чем на АЭС или ТЭС. Кроме того, если значительная часть акватории будет покрыта волновыми преобразователями, это может привести к неприятным экологическим последствиям, так как волны играют важную роль в газообмене атмосферы и океана, в очистке поверхности моря и приводного слоя воздушного потока от загрязнения.
Поэтому волновую энергетику следует рассматривать только как дополнительный к традиционным источник энергии, который может иметь значение только в некоторых районах мира.

4) Приливные электростанции
В прибрежной зоне приливные волны проявляются в периодическом подъеме и опускании уровня. В узостях приливы часто проявляются в виде мощных течений. В некоторых местах высота прилива достигает значительной величины – 12-20 м. Энергия приливных волн огромна.

Человек уже давно начал использовать энергию приливов. Так, приливные мельницы использовались в 15 веке в Англии, были широко распространены на северо-восточном побережье Канады в 17 веке.
Для концентрации водного напора на станции плотина отделяет часть акватории. В теле плотины размещаются гидрогенераторы, водопропускные сооружения, здание станции. Величина напора зависит от колебаний уровня по обе стороны плотины. Колебания во внешнем бассейне определяются местным приливом, колебания во внутреннем бассейне определяются расходами воды при работе станции. Приливные станции относятся к низконапорным гидротехническим сооружениям, в которых водяной напор не более 15-20 м.
Первая в мире приливная гидроэлектростанция мощностью 320 МВт была запущена в 1966 г. устье реки Ранс (Франция). Первая приливная электростанция в нашей стране, имеющая два гидроагрегата по 400 кВт каждый, была построена в Кислой губе на Баренцевом море в 1968 г. Несколько приливных станций проектируется и уже построено в заливе Фанди, который характеризуется самыми высокими приливами в мире. Опыт строительства и эксплуатации подобных станций показал, что они экономически оправданы, и издержки их эксплуатации гораздо ниже, чем при эксплуатации обычных ГЭС. Наиболее развитым в мире рынком электроэнергии, выработанной посредством волн и приливов, является Шотландия, где установлены самые большие приливные турбины.

Использование энергии приливов ограничивается, в основном, высокой стоимостью сооружения. Кроме того, как оказалось, приливные станции характеризуются отрицательным влиянием на окружающую среду. Сооружение плотины приведет к увеличению амплитуды прилива. Даже небольшое повышение амплитуды прилива вызовет значительное изменение распределение грунтовых вод в береговой зоне, увеличит зону затопления, нарушит циркуляцию водных масс, изменит ледовый режим в части бассейна за плотиной и т.д.
Сооружение плотины должно вызвать и важные биологические последствия. В бассейне за плотиной работа станции будет оказывать воздействие на литораль (зона между наивысшей точкой затопления во время прилива и нижней, обнажающейся при отливе). Плотина может оказать вредное воздействие не только на местные сообщества, но и на мигрирующие виды. Например, по оценкам биологов строительство плотины в Пенжинской губе Охотского моря нанесет непоправимый вред популяции охотоморской сельди. При строительстве плотин в зоне умеренного климата возможно образование зоны сероводородного заражения, подобной тем, которые наблюдаются в заливах и бухтах, имеющих естественные пороги. Фиорды Скандинавского полуострова, имеющие естественный порог, представляют собой классический пример такого естественного сероводородного заражения.

5) Градиент-температурная энергетика
Данный способ получения энергии основан на разности температур. Не слишком распространен. Посредством него можно получать достаточно большое количество энергии при небольшой ее себестоимости. Наибольшее число градиент-температурных электростанций располагается на морском побережье и для работы использует морскую воду. Почти 70% солнечной энергии поглощает мировой океан. Перепад же температур между водами на глубине в сотни метров и водами на поверхности океана – огромный источник энергии, который оценивается в 20-40 тыс. ТВт, из них можно использовать только 4 ТВт.
Недостатки: выделение большого числа углекислоты, нагрев и снижение давления глубинных вод, и остывание поверхностных вод. Данные процессы негативно влияют на климат, флору и фауну региона.
В настоящее время разрабатывается новая концепция таких энергетических установок, которая даёт основания ожидать от теплоэнергетического модуля эффективной работы не только в наиболее прогретой части тропического океана, но и по всей акватории, где средний градиент температуры составляет примерно 17ºС. Ожидается, что КПД будет отличным от нуля даже при разности температур, стремящейся к нулю. По предварительным расчётам расходы на строительство такой гидроэлектростанции вполне соотносятся с расходами на традиционную ГЭС.

6) Ветровая энергетика
Человечество давно использует энергию ветра. Парусные суда – основной вид транспорта, который в течении столетий обеспечивал связь людей различных континентов, представляют наиболее яркий пример использования ветровой энергии.
Другой, хорошо известный пример эффективного использования ветровой энергии, – ветряные мельницы. Ветряки широко использовались для откачки воды из колодцев. В конце прошлого века наступил новый этап использования ветровых установок – они начали применяться для выработки электроэнергии. В тридцатые годы нашего века миллионы ветровых электрогенераторов мощностью около 1 кВт использовались в сельской местности Европы, Америки, Азии. По мере развития центрального электроснабжения распространение ветровых электрогенераторов резко упало. С ростом стоимости ископаемого топлива и осознания экологических последствий его применения надежды многих исследователей опять стали связываться с ветровой энергетикой.
Действительно ветровой потенциал огромен – около 2000 ТВт составляет мощность ветрового потока в атмосфере. Использование даже небольшой части этой мощности привело бы к решению энергетических проблем человечества.
Ветровая энергетика не потребляет ископаемое топливо, не использует воду для охлаждения и не вызывает теплового загрязнения водоемов, не загрязняет атмосферу. И, тем не менее, ветровые электрогенераторы имеют широкий спектр отрицательных экологических последствий, выявленных только после того, как в 1970 годы начался период возрождения ветровой энергетики.
Главные недостатки ветровой энергетики – низкая энергетическая плотность, сильная изменчивость в зависимости от погодных условий, ярко выраженная географическая неравномерность распределения ветровой энергии. Обычно рабочий диапазон скоростей ветра крупных ветровых установок составляет от 5 до 15 м/с. При скорости ветра меньшей 5 м/с эффективность работы установки падает, при скоростях ветра больших 15 м/с велика вероятность поломки конструкции, прежде всего лопастей. Размещение генераторов на больших высотах (там, где больше скорость) выдвигает повышенные требования к прочности конструкции высотных мачт, которые должны обеспечивать удержание при мощной ветровой нагрузке ротора, коробки передач и генератора. Разработка и создание более надежных конструкций значительно удорожает стоимость ветровых установок, хотя себестоимость ветровой электроэнергии примерно в 1.5-2 раза ниже себестоимости электроэнергии, полученной в фотоэлектрических преобразователях.
Еще одной важной проблемой использования ветровых генераторов являются сильные вибрации их несущих частей, которые передаются в грунт. Значительная часть звуковой энергии приходится на инфразвуковой диапазон, для которого характерно отрицательное воздействие на организм человека и многих животных.
Так как скорость вращения лопастей ветровых генераторов близка к частоте синхронизации телевидения ряда стран, то работа ветровых генераторов нарушает прием телепередач в радиусе 1-2 км от генератора. Ветровые генераторы являются также источниками радиопомех. Вращение лопастей ветровых генераторов губит птиц. Так как обычно ветровые установки располагаются в больших количествах в районах сильных ветров (хребты, морское побережье), то они могут приводить к нарушению миграции перелетных птиц. Модуляция ветрового потока лопастями создает некоторое подобие регулярных структур в воздухе, которые мешают ориентации насекомых. В Бельгии установили, что это приводит к нарушению устойчивости экосистем полей, расположенных в зоне ветровых установок, в частности наблюдается падение урожайности.
Наконец, ветровая энергетика требует больших площадей для размещения установок. Поэтому системы ветровых установок стараются размещать в безлюдной местности, что в свою очередь удорожает стоимость передачи энергии.
В настоящее время в мире начался период перехода от исследовательских работ в области ветровой энергетики к их широкому внедрению. Темпы развития ветровой энергетики в таких странах как США, Бельгия, Великобритания, Норвегия, имеющих высокий ветроэнергетический потенциал, остаются очень высокими.

7) Геотермальная энергетика

Геотермальная энергия – это энергия, внутренних областей Земли, запасенная в горячей воде или водяном паре. В 1966 г. на Камчатке в долине реки Паужетка была пущена первая в СССР геотермальная тепловая станция мощностью 1,1 МВт. В отдаленных районах стоимость энергии, получаемой на геотермальных станциях, оказывается ниже стоимости энергии, получаемой из привозного топлива. Геотермальные станции успешно функционирует в ряде стран – Италии, Исландии, США. Первая в мире геотермальная электростанция была построена в 1904 г. в Италии. Геотермальная энергия в Исландии начала использоваться в 1944 г. Однако интерес и использование геотермальной энергии резко выросли в 60-70 годы.

В США в Калифорнии в начале 90 годов действовало около 30 станций общей мощностью 2400 МВт. Пар для этих станций извлекался с глубин от 300 до 3000 м. В этом штате США за 30 лет мощность геотермальных станций возросла почти в 200 раз. Таковы темпы развития геотермальной энергетики. Наиболее доступна геотермальная энергетика в зонах повышенной вулканической деятельности и землетрясений. Такая привязка к определенным районам является одним из недостатков геотермальной энергетики. Гейзеры – это хорошо известная форма поступления на поверхность Земли горячей воды и пара. По оценке Геологического управления США разведанные источники геотермальной энергии могли бы дать 5-6% современного потребления электроэнергии в стране. Оценка перспективных источников дает величину примерно в 10 раз большую. Однако эксплуатация некоторых этих источников пока нерентабельна. Наряду с этими ресурсами, которые могут быть использованы для выработки электроэнергии, в еще большем количестве имеется вода с температурой 90-1500С, которая пригодна как источник тепла для обогрева. В перспективе для извлечения энергии из недр Земли можно использовать не только запасы горячей воды и пара, но и тепло сухих горных пород (такие области сухих горных пород с температурой около 3000С встречаются значительно чаще, чем водоносные горячие породы), а также энергию магматических очагов, которые в некоторых районах расположены на глубинах в несколько километров.
Наиболее оптимальная форма – сухой пар. Прямое использование смеси пара и воды невозможно, т.к. геотермальная вода содержит обычно большое количество солей, вызывающих коррозию, и капли воды в паре могут повредить турбину. Наиболее частая форма поступления энергии – просто в виде горячей воды, прежде всего для получения тепла. Эта вода может быть использована также для получения пара рабочей жидкости, имеющей более низкую температуру кипения, чем вода. Так как геотермальный пар и вода имеют сравнительно низкую температуру и давление, КПД геотермальных станций не превышает 20%, что значительно ниже атомных (30%) и тепловых работающих на ископаемом топливе (40%).
Использование геотермальной энергии имеет и отрицательные экологические последствия. Строительство геотермальных станций нарушает «работу» гейзеров. Для конденсации пара на геотермальных станциях используется большое количество охлаждающей воды, поэтому геотермальные станции являются источниками теплового загрязнения. При одинаковой мощности с ТЭС или АЭС геотермальная электростанция потребляет для охлаждения значительно большее количество воды, т.к. ее КПД ниже. Сброс сильно минерализованной геотермальной воды в поверхностные водоемы может привести к нарушению их экосистем. В геотермальных вода в больших количествах содержится сероводород и радон, который вызывает радиоактивные загрязнения окружающей среды.

Мир современной энергетики является основополагающим условием для развития разнообразных отраслей промышленности. Промышленно развитые страны отличаются стремительными темпами развития энергетики, которые опережают темпы развития отраслевой промышленности.

В свою очередь, энергетика является серьезным источником неблагоприятного воздействия на человека и окружающую среду. Это влияние сказывается на атмосфере, за счет высокого потребления кислорода, выбросов газов, твердых частиц и влаги.

Гидросфера из-за потребления воды на нужды энергетики, создания искусственных водохранилищ, сбросов жидких отходов, нагретых и загрязненных вод. Существенно изменяется и литосфера по причине чрезмерного потребления ископаемых топливных ресурсов, изменения ландшафтов, выброса токсичных веществ.

Влияние на водные ресурсы

Современные технологии отличаются, как преимуществами, так и недостатками. К примеру, количество произведенной электроэнергии зависит от водных ресурсов, которые могут истощаться во время засухи.

Это играет огромную роль для энергетического комплекса страны. Энергетика и экология – сомнительное сочетание, когда речь идет о строительстве плотин, переселении жителей, заилении водохранилищ, пересыхании русел рек, затоплении огромных территорий, значительной затратности проектов.

Изменение уровня воды в реках приводит к полной гибели растительности, плотины становятся серьезным препятствием для миграции рыб, ГЭС многокаскадного типа уже превратили реки в озера, перерастающие в болота. Россия получает при использовании гидроресурсов не более 20% энергии, а при строительстве только одной ГЭС затапливается более 6 миллионов гектар. Таким образом, энергетика влияет на экологию , и это неравноценный по потерям для природы обмен.

Истощение, загрязнение

Что касается влияния энергии ТЭС на экологию, то можно отметить, как главный фактор, выделение вредных веществ в виде закиси углерода, соединений азота, свинца и значительного количества тепла. 5 миллиардов тонн угля ежегодно сжигается и более трех миллионов тонн нефти, что сопровождается гигантским выбросом в атмосферу Земли тепла.

Нынешние темпы потребления угля приведут к неминуемому истощению ископаемого через 150 – 200 лет, нефти - через 40 – 50 лет, газа, предположительно, - через 60. Полный спектр работ по добыче, транспортировке и сжигании данного вида топлива сопровождается процессами, ощутимо влияющими на загрязнение окружающей среды.

Связано с добычей угля и засолением водных ресурсов. Помимо этого, откаченная вода содержит радон и изотопы радия. А атмосфера загрязняется продуктами сжигания угля в виде оксидов серы – 120 тысяч тонн, окислов азота – 20 тысяч тонн, пепла 1500 тонн, оксида углерода – 7 миллионов тонн.

Кроме того, происходит при горении образование более 300 тысяч тонн золы, включающей в себя 400 тонн токсичных металлов в виде ртути, мышьяка, свинца и кадмия. Работу ТЭС можно сопоставить, по выбросам в атмосферу радиоактивных веществ, с работой АЭС аналогичной мощности.

Ежегодные выбросы оксидов углерода способствуют повышению температуры на Земле, что может привести к вполне предсказуемым климатическим изменениям.

Влияние энергетики на экологию , когда речь идет о нефти и газе, достигло катастрофических и глобальных масштабов. Ученые утверждают, что выбросы от сжигания нефти и угля ежегодно влияют на состояние здоровья людей примерно так же, как авария на Чернобыльской АЭС. Этот «тихий Чернобыль», обладает последствиями, результаты которого пока невидимы, но они целенаправленно и постоянно уничтожают экологию.

Как получить энергию без вреда для экологии

Солнце – неисчерпаемый источник тепла. Среди существующих традиционных видов альтернативной энергетики (энергия волн, земли, ветра, приливов, геотермальная энергия, а также энергия из газа от мусорных свалок и навоза на фермах) основным видом является энергия Солнца.

Человеческий мир, постоянно находящийся в поисках энергии, только недавно обратил внимание на источник энергетического изобилия. Использование энергии Солнца для нужд промышленности на данном этапе обходится дорого.

Но тенденция снижения цен за последние годы существенно снизилась и за последние пять лет стала в два раза ниже первоначальной. Изменение и усовершенствование технологий уже завтра может сделать солнечную энергию доступной и неограниченной.

Альтернативная энергетика и экология: факты

  • Возобновляемые источники энергии в Шотландии приходятся на треть всего объема вырабатываемой энергии.
  • К 2027 году Евросоюзом планируется довести долю альтернативной энергетики до 20%.
  • Альтернативная энергетика способствует созданию рабочих мест.
  • Использование отходов жизнедеятельности крупного рогатого скота в целях переработки в биогаз даст возможность обеспечить электроэнергией жителей планеты и сократить выбросы парниковых газов.
  • Альтернативная энергетика - более привлекательная отрасль для инвесторов, которые отдают ей предпочтение перед другими видами топлива.

Эти и многие другие факты могут обеспечить наши энергетические потребности без ущерба для экологии, что оздоровит нашу природу и население планеты.


Показана связь глобальных и локальных экологических проблем с энергетикой. Установлены глобальные критерии этих взаимосвязей - количество потребляемых ресурсов и выделяемых парниковых газов. Приведены количественные характеристики видов энергоносителей по этим важнейшим показателям.

Дана качественная и количественная оценка экологической эффективности различных источников энергии, в том числе альтернативных и возобновляемых. Показано, что с точки зрения решения глобальных экологических проблем наибольшие преимущества имеет атомная энергия.

Kлючевые слова: экологические проблемы, энергетика – угольная, газовая, нефтяная, солнечная, ветровая, ядерная, гидроэнергетика, качественная и количественная оценка экологической эффективности.

The article describes the interrelation between global and local environmental issues and energy production. The author defines global criteria for these relationships which are the amounts of resources consumed and greenhouse gases emission. He also gives quantitative characteristics of the energy materials types with respect to these key indicators.

The article presents qualitative and quantitative evaluation of the environmental efficiency of various types of energy sources including alternative and renewable ones. It is shown that the nuclear power has the greatest benefits in terms of solution of global environmental problems.

Keywords: environmental problems, power generation – coal, gas, oil, solar, wind, and nuclear, hydraulic power generation, qualitative and quantitative evaluation of environmental performance.

Экологически обусловленная угроза существованию человеческой цивилизации официально признана на самом высоком межгосударственном уровне; научно-технический прогресс создал опасность экологической катастрофы, и само понятие «развитие» поставлено под вопрос. Появилась насущная необходимость пересмотра шкалы человеческих ценностей.

Потребительское отношение к природе поставило ее на грань выживания. Доминирующие схемы производства и потребления ведут к экологическому опустошению, возрастающему риску для жизни и здоровья людей из-за снижения качества окружающей среды. Основы глобальной безопасности находятся под угрозой.

Как следует из доклада Комиссии ООН по проблемам окружающей среды (UNEP), прогноз развития человечества до 2032 г. неутешителен. Под воздействием человеческой деятельности на планете произойдут необратимые изменения. Будет так или иначе деформировано более 70 % земной поверхности, безвозвратно утеряно более 1/4 всех видов животного и растительного мира, невосполнимым дефицитом станут безопасный воздух, чистая питьевая вода, ненарушенные ландшафты, уменьшится способность природы восстанавливаться после антропогенного воздействия.

Именно высокое качество природной среды является главным богатством человечества и безусловной ценностной категорией, сущностью глобальных экологических интересов. По данным ВОЗ, уже сегодня 80 % всех болезней в мире возникает из-за потребления некачественной питьевой воды, а по оценкам МАГАТЭ, ежегодно 5 млн человек умирают от болезней, связанных с потреблением загрязненной и некачественной воды. Вода вполне может стать едва ли не главной причиной будущих вооруженных конфликтов, таких же, какие сейчас возникают из-за нефти.

Даже самая поверхностная статистика, связанная с экологическим состоянием территории России, дает неутешительные прогнозы: так, на сегодняшний день более трети городского населения РФ проживает на территориях, где не проводятся мониторинговые наблюдения за загрязнением атмосферы, а более половины – в городах с высоким и очень высоким уровнем загрязнения атмосферы.

Россия вместе со всей планетой переживает серьезные экологические проблемы – растет средняя температура воздуха, отступает вечная мерзлота, наблюдаются различные проявления нестабильности климатического характера. Проблема глобального потепления со все большей очевидностью сопровождается проблемами экологических последствий, вызванными усилением экстремальных погодных условий.

Экологические проблемы в зависимости от масштаба воздействия хозяйственной деятельности человека на окружающую среду принято разделять на глобальные и локальные. Глобальные экологические проблемы непосредственно связаны с локальными экологическими проблемами (рис. 1).

Для удовлетворения потребности в энергии существуют возобновляемые и невозобновляемые источники. Солнце, ветер, гидроэнергию, приливы и некоторые другие источники энергии называют возобновляемыми, так как их использование человеком практически не изменяет их запасы. Уголь, нефть, газ, торф, уран относят к невозобновляемым источникам энергии, и при переработке они теряются безвозвратно.

В то же время такая классификация довольно условна, например, использование урана в закрытом топливном цикле ближе скорее к возобновляемому типу.

Рис. 1. Взаимосвязь глобальных и локальных экологических проблем

Глобальные экологические проблемы тесно связаны прежде всего с экономическим положением в конкретных странах, основными показателями которого являются ВВП на душу населения, а также производство и потребление энергии (табл. 1).

Таблица 1

Основные энергетические характеристики стран мира –

главных потребителей первичной энергии

Страна

Население, млн чел. *

ВВП на душу населения по ППС, долл. США **

Мощность электростанций ГВт (э) **

Потребление электроэнергии

Всего, млрд кВт·час *

На душу населения в год (кВт·час на 1 чел.)

* – на 2010 г., кроме потребления электроэнергии в Китае и Индии (на 2009 г.) [Россия… 2012].

** – на 2012 г., кроме мощности электростанций в Японии, Индии (на 2009 г.) и США (на 2010 г.) .

Из табл. 1 видно, что энергопотребление в развитых странах в 11–17 раз выше, чем в развивающихся (например, Китае и Индии).

Если все страны мира в ближайшие 15–20 лет выйдут на уровень потребления энергии США или хотя бы «экономной» Японии, то общее потребление энергии возрастет в соответствии с численностью населения, то есть практически в 15 раз. Готова ли мировая энергетика к такому «большому скачку»? Конечно же, нет. На планете просто нет столько органического топлива. Поэтому можно сделать следующий вывод: развитие энергетики должно идти в направлении использования новых мощных источников энергии без сжигания органического топлива.

Тенденция к использованию электрической энергии очевидна. Но это лишь промежуточная форма, то есть для того чтобы произвести энергию, нужно иметь первичный достаточно мощный источник.

Исчерпаемые энергоресурсы – нефть, уголь и газ наряду с ураном (ядерная энергетика) – в ближайшие десятилетия останутся основными источниками энергии (рис. 2), причем доля энергопроизводства, основанного на использовании углеводородного сырья, по-прежнему будет наибольшей. Тем не менее ограниченность запасов нефти и газа является очевидной. Перспектива их активного использования просматривается только лишь на несколько десятилетий. В течение этого времени использующие нефть и газ энергопроизводящие мощности должны быть заменены другими .

Рис. 2. Вклад различных видов энергоносителей в производство электроэнергии в мире

Главная проблема, интересующая человечество, – это обеспечение экологической безопасности. Понятие «экологическая безопасность» определено в законе «Об охране окружающей среды»: «Экологическая безопасность – состояние защищенности природной среды и жизненно важных интересов человека от возможного негативного воздействия хозяйственной и иной деятельности, чрезвычайных ситуаций природного и техногенного характера, их последствий» [Федеральный… 2002].

Угрозы экологической безопасности:

Разрушение озонового слоя;

Изменение климата;

Трансграничное воздействие на окружающую среду;

Деградация экосистем;

Потеря биологического разнообразия;

Уменьшение лесного покрова;

Деградация сельскохозяйственных угодий;

Истощение и дефицит природных ресурсов;

Химическое, физическое, радиационное загрязнение окружающей среды.

Глобальные экологические проблемы тесно связаны с глобальными энергетическими проблемами (рис. 3).

Связь между глобальными экологическими и энергетическими проблемами особенно видна при сравнении двух показателей:

1) требуемой массы изымаемых ресурсов для получения единицы энергии;

2) глобального влияния на природу через выделение парниковых газов.

В табл. 2 приведены основные характеристики различных способов генерации электроэнергии по двум глобальным показателям: выбросам парниковых газов и мощности энерговыделения на единицу массы, свидетельствующих об эффективности использования внутренней энергии вещества, то есть ядерной и термоядерной энергии. На этом, собственно, основано и существование Солнечной системы, энергия в которой существует благодаря двум реакторам: ядерному (внутри Земли) и термоядерному (на Солнце).

Таблица 2

Глобальная эффективность различных способов генерации энергии

Решением проблемы обеспечения энергией могло бы стать полноценное овладение энергией термоядерного синтеза. Однако исследования последних лет показали, что на сегодняшнем уровне развития техники и технологий на пути полномасштабного использования термоядерной энергии существует ряд технических проблем, решением которых ученые занимаются последние 50 лет без каких-либо значительных успехов.

Таким образом, среди существующих альтернативных возможностей замены реально покрывать растущие потребности человечества в энергии на ближайшие несколько сотен лет позволят только современные технологии топливной и ядерной энергетики.

Наиболее интересны с точки зрения влияния на природу и здоровье человека угольная и ядерная энергетика, так как только эти два вида энергоносителей обладают запасами на достаточно длительный период. Так, по данным В. Г. Родионова , угля хватит на 420 лет, тогда как углеводородов уже к 2030 г. останется только 1/5 часть от имеющихся запасов, то есть они могут быть в основном исчерпаны в ближайшие 30 лет. В то же время запасов урана с учетом вовлечения изотопа 238 в быстрых реакторах хватит на тысячи лет.

Уголь. Атмосферные выбросы от угольных станций стали причиной так называемых кислотных дождей, которые губят растительность, почву, водоемы и прежде всего здоровье людей. Чтобы оценить объемы выпадающих кислотных дождей, достаточно представить себе, что одна ТЭС мощностью 1000 МВт, работающая на угле с содержанием серы около 3,5 %, несмотря на применение средств очистки, выбрасывает в атмосферу примерно 140 тыс. т сернистого ангидрида в год, из которого образуется около 280 тыс. т серной кислоты. С поверхностей золоотвалов ветер поднимает золу, образуя пыльные бури, ежегодный объем золошлаковых отходов ТЭС СНГ в настоящее время превышает 120 млн т.

Перечень основных веществ, выбрасываемых в окружающую среду в результате работы угольных электростанций, а также основных экологических последствий представлен в табл. 3, потенциальное воздействие выбросов угольных станций на организм человека показано на рис. 3.

Таблица 3

Выбросы вредных веществ в результате сжигания угля и основные экологические последствия

Вещество

Основные экологические последствия

(диоксид серы)

Способствует формированию кислотных дождей и возникновению заболеваний дыхательных путей и сердечно-сосудис-тых заболеваний

(оксиды азота)

Способствуют формированию смога и возникновению заболеваний дыхательных путей

Твердые частицы

Способствуют формированию смога, дымки, возникновению заболеваний дыхательных путей и легких

CO 2 (углекислый газ)

Парниковый газ: поглощает инфракрасное излучение, происходит аккумуляция части тепла в атмосфере, что ведет к повышению температуры

Ртуть и пр. тяжелые металлы

Вызывают нарушения развития и неврологические нарушения у людей и животных. При попадании в воду образуется метилртуть – высокотоксичное химическое вещество, накапливающееся в рыбе, животных и людях

Зола-унос и золошлак

Вымывание этих веществ с мест хранения и захоронения в грунтовые воды и прорыв ряда крупных зольных захоронений стали острыми экологическими проблемами

В процессе сжигания угля происходит радиоактивное загрязнение окружающей среды, содержащиеся в нем радионуклиды (238 U, 210 Pb, 40 K, 210 Po, 226 Ra, 228 Ra, 230 Th и др.) выбрасываются в атмосферу и концентрируются в золе, выделение радиоактивных веществ на единицу полученной энергии на угольных ТЭС больше, чем на АЭС.

Рис. 3. Воздействие выбросов угольных станций на организм человека

Наиболее чистое органическое топливо – природный газ . Остановимся на таком источнике, как сланцевый газ .

Проведенные исследования выявили 5 основных экологических проблем добычи сланцевого газа:

1) загрязнение водоносных слоев высокотоксичными веществами и поверхностных водоемов сточными водами;

2) выбросы метана в атмосферу;

3) повышение радиоактивного фона в районах добычи;

4) увеличение вероятности землетрясений;

5) изъятие из оборота значительных земельных и водных ресурсов.

Основные экологические проблемы, возникающие при добыче и использовании нефти в качестве энергоресурса, связаны с:

Химическим загрязнением грунтовых вод при добыче, химическим и тепловым загрязнением вод поверхности, образованием нефтяной пленки;

Нарушением ареалов обитания фауны и произрастания флоры;

Загрязнением и деградацией почвенного покрова;

Значительным водозабором.

Атомная энергетика не потребляет кислорода, не выбрасывает в атмосферу и водоемы вредные химические вещества, она существенно экономит расходование органического топлива, запасы которого достаточно ограниченны. В частности, в пяти наиболее развитых странах мира ядерная энергетика позволяет сэкономить в год до 440 млн т угля (в России – 65,3 млн т), 350 млн т нефти (в России – 40,3 млн т), до 280 млрд м 3 газа (в России – 36,8 млрд м 3), предотвратить сжигание свыше 450 млн т кислорода (в России – 36 млн т), сохранить земельные пространства на территории в 70 тыс. га (в России – 11 тыс. га). Экологически чистым районом Европы называют Францию, где выработка электроэнергии на АЭС превышала 70 % от общей выработки.

Из всех видов ВИЭ только гидроэнергия в настоящий момент вносит заметный вклад во всемирное производство электроэнергии (17 %). В большинстве промышленно развитых стран незадействованным на сегодня остался лишь незначительный по объему гидроэнергетический потенциал, что связано прежде всего с необходимостью отчуждения значительных территорий при организации ГЭС. Основные экологические последствия гидроэнергетики :

Затопление сельскохозяйственных угодий и населенных пунктов;

Нарушение водного баланса, что ведет к изменению условий существования флоры и фауны;

Климатические последствия (изменение теплового баланса, увеличение количества осадков, скорости ветра, облачности и т. д.);

Заиливание водоема и эрозия берегов, ухудшение самоочищения проточных вод и уменьшение содержания кислорода, затрудняется свободное движение рыб;

Гидроэнергетические сооружения в потенциале несут в себе опасность крупных катастроф.

Ветроэнергетика также оказывает негативное воздействие на окружающую среду:

Отчуждение больших земельных площадей (так, например, для текущего уровня производства электроэнергии во Франции с применением энергии ветра потребуется порядка 20 тыс. км 2 земли – 4 % территории страны);

Ветровая энергетика является нерегулируемым источником энергии;

Шумовые воздействия (при использовании установки мощностью 2–3 МВт возникает необходимость отключения ее в ночное время);

Помехи для воздушного сообщения и для радио- и телевещания, нарушение путей миграции птиц (установка мощностью 2–3 МВт должна иметь диаметр ветряного колеса 100 м);

Локальные климатические изменения вследствие нарушения естественной циркуляции воздушных потоков;

Опасность для мигрирующих птиц и насекомых;

Изменение традиционных морских перевозок, неблагоприятное воздействие на морских животных (при размещении ветроустановок в водной среде);

Ландшафтная несовместимость, непривлекательность, визуальная дискомфортность.

Солнечные электростанции (СЭС) эффективны только для территорий с высоким уровнем инсоляции. В средней полосе европейской части России интенсивность солнечного излучения составляет 150 Вт/м 2 , что в 1000 раз меньше тепловых потоков в котлах ТЭС. При использовании СЭС возникает ряд экологических проблем:

Отчуждение больших земельных площадей, их возможная деградация (только для СЭС в 1 ГВт (эл.) в средней полосе европейской части России при 10 % КПД необходима минимальная площадь в 67 км 2);

Затемнение больших территорий солнечными концентраторами;

Большая материалоемкость (затраты времени и людских ресурсов в 500 раз больше, чем в традиционной энергетике);

Возможные утечки рабочих жидкостей, содержащих хлораты и нитриты;

Перегрев и возгорание систем, загрязнение продукции токсичными веществами при использовании солнечных систем в сельском хозяйстве;

Изменение теплового баланса, влажности, направления ветра в районе расположения станции;

Воздействие космических СЭС на климат;

Передача энергии на Землю в виде микроволнового излучения, опасного для живых организмов и человека.

Основные экологические последствия биоэнергетики :

Выбросы твердых частиц, канцерогенных и токсичных веществ, окиси углерода, биогаза, биоспирта;

Выброс тепла, изменение теплового баланса;

Обеднение почвенной органики, истощение и эрозия почв (для производства из навоза биогаза для выработки 1000 МВт электрической энергии требуются 80 млн свиней или 800 млн птиц на площади 80–100 км 2);

Взрывоопасность (биогазовая электроустановка должна контролироваться и содержаться в исправности в соответствии с инструкциями);

Большое количество отходов в виде побочных продуктов (промывочные воды, остатки перегонки).

Оценка экологической эффективности воздействия энергогенерации на окружающую среду, выполненная в данной работе на основе балльной оценки различных способов генерации электроэнергии, позволила провести сравнительный анализ экологической эффективности производства электроэнергии при использовании различных видов энергоресурсов по семи важнейшим показателям: объем выбросов парниковых газов, объем выбросов вредных веществ в атмосферу, объем сбросов в водные источники, образование отходов, отчуждение земельных ресурсов, выделение радиоактивных веществ в окружающую среду и риск для людей (табл. 4).

Таблица 4

Сравнительные показатели экологической эффективности

различных способов производства энергии

Показатель

Баллы различных способов генерации энергии

Уголь

нефть

Гидро-

энергия

Солнце

Ветер

Ядерная

энергия

Количество выделяющихся парниковых газов

0,7Сброс вредных веществ в водные источники

Образование отходов

Отчуждение земельных ресурсов

Выделение радиоактивных веществ в окружающую среду

Риск для людей

Для комплексной оценки влияния на окружающую среду всех учитываемых факторов авторами был разработан суммарный комплексный показатель воздействия на окружающую среду. При его расчете семь важнейших экологических показателей оценены по 10-балльной системе: 10 баллов – наиболее вредное воздействие (по фактической величине) и 0 баллов – отсутствие воздействия.

Полученные расчетные значения суммарного комплексного показателя воздействия на окружающую среду приведены на рис. 4 и 5.

Проведенные расчеты показателей воздействия на окружающую среду показали, что по выбросам парниковых газов 1 место по уровню воздействия занимает уголь; газ и нефть по уровню воздействия примерно на 28 % ниже; гидроэнергия, солнечная, ветряная и ядерная энергия имеют очень незначительные показатели, то есть отмечается только сопутствующее выделение парниковых газов при генерации энергии.


Рис. 4. Сравнительные показатели экологической эффективности различных способов производства энергии

Рис. 5. Суммарный комплексный показатель вредного воздействия на окружающую среду и человека

При рассмотрении воздействия на окружающую среду по выбросам вредных веществ установлено, что наибольший выброс характерен для угля, вдвое ниже выбросы для нефти и газа, но примерно сопоставимый объем выбросов характерен при производстве и утилизации солнечных батарей. По отходам наблюдается аналогичная ситуация.

Воздействие на окружающую среду в части отчуждения земельных ресурсов в наибольшей степени характерно для гидро- и солнечной энергетики.

По выделению радиоактивных веществ в окружающую среду, казалось бы, должна лидировать ядерная энергетика, но в действительности получается, что в связи с высочайшим совершенством процессов в ней реальные выбросы радиоактивных веществ в окружающую среду в штатном режиме вдвое ниже, чем при сжигании угля.

Таким образом, основываясь на сравнении экологического воздействия различных видов энергогенерации, представленного на рис. 5, можно сделать вывод, что с точки зрения как глобальных, так и локальных экологических проблем ядерная энергетика по всем показателям выглядит предпочтительнее.

Литература

Макаров А. А. Научно-технологические прогнозы развития энергетики России // Академия энергетики. 2009. № 2 (28). С. 4–12.

Родионов В. Г. Энергетика: проблемы настоящего и возможности будущего. М. : ЭНАС, 2010.

Фортов В. Е., Макаров А. А. Направления инновационного развития энергетики мира и России // Успехи физических наук. 2009. Т. 179. № 12. С. 1337–1353.

Россия и страны мира: стат. сб. М. : Росстат, 2012.

BP Statistical Review of World Energy June 2012. N. p. : Pureprint Group Limited, 2012.

Grachev V. A., Lobkovsky V. A. Possible Environmental Impacts of Shale Gas Production in Europe Based on the International Practices of Fracking Technology Utilization // Biosciences Biotechnology Research Asia. 2015. Vol. 12. No. 1. Pp. 253–261.

International Energy Agency. Energy Technology Perspectives. Paris: OECD/IEA, 2008.

Central Intelligence Agency. The World Factbook: [сайт]. URL: https://www.cia.gov/ library/publications/the-world-factbook/.

Энергия – это одно из важнейших условий существования биосистемы. До недавнего времени, то есть примерно 3,5 млрд. лет, биосфере Земли вполне хватало энергии Солнца. И единственному кому на нашей планете ее не хватает – человек. Дополнительная энергия ему требуется не как живому организму, а в связи с обеспечением своей производственно-хозяйственной деятельности и бытовых нужд. Для этих целей человечество производит два вида энергии: тепловую и электрическую. В их производстве вместе в энергетической задействованы еще несколько смежных отраслей хозяйственной деятельности. Потому экологические проблемы энергетики это проблемы не одного направления человеческой деятельности, а целого комплекса. Они многосторонни и многочисленны и возникают на всех стадиях производства от добычи полезных ископаемых до поставки энергии конечному потребителю.

В настоящее время энергию вырабатывают из двух источников: возобновляемого и не возобновляемого. К первому относят энергию Солнца, ветра и воды. Производство в этом случае малоэффективно, зависимо от внешних условий и сопряжено с существенными затратами. К не возобновляемым источникам относятся все виды полезных ископаемых, внутреннюю химическую энергию которых можно преобразовать. Это: древесина, торф, уголь, нефть, газ и их производные. Расщепление атома в середине прошлого века дало возможность получать энергию, возникающую в ходе ядерных реакций. Так возникла ядерная энергетика, которая стоит несколько особняком от других.

Выработкой занимаются многочисленные тепловые, гидро- и электростанции, комплексы, производящие одновременно тепловую и электрическую энергии. Эти станции различаются по мощности. Основная масса станций построено из расчета производственной мощности в 1000 Мвт. Но есть и малые станции, обеспечивающие энергией небольших потребителей, вплоть до частных домохозяйств. Атомные станции обладают огромной мощностью до 8200 Мвт.

Экологические проблемы энергетики начинаются с добычи природных ископаемых. Разработка торфяников и вырубка лесов, угольные шахты и нефтяные и газовые месторождения – это, прежде всего, опустошение природы. Ресурсы, создаваемые природой на протяжении миллионов лет, вынимаются из мест их залежей и в будущем не могут быть восполнены. В ходе разработок и по их окончании, территории, как правило, остаются брошенными. Рекультивация почвы не проводится, не высаживаются деревья на место вырубленных. Экосистемы деградируют и погибают.

Транспортировка добытых полезных ископаемых до мест их применения производится по природным транспортным коридорам – рекам, морям и океанам или по специально созданным для этого трубопроводам, железнодорожным и транспортным магистралям. Аварии, розливы, выбросы, затопления, завалы и многое другое загрязняет территории, по которым проходит транспортировка.

Станции, их виды и проблемы


Экологические проблемы современной энергетики это еще и требования, предъявляемые к техническим и строительным нормам размещения станций по выработке электрической энергии и тепла.

Гидростанции. Возможность вырабатывать энергию при помощи воды, создает необходимость создавать дополнительные гидротехнические сооружения. Каскады плотин и водохранилищ, возводимые на реках, приводят к нарушению их водообмена. Необходимость для работы гидроэлектростанций создания водохранилищ, не только приводит к затоплению значительных территорий, это еще существенно влияет на уровень воды реки и большинства ее притоков. Уровень рек, как правило, повышается, а вот притоки мелеют и как речные артерии исчезают. Отрицательное воздействие на экосистему водного бассейна имеет также регулирование уровня воды. Быстрый сброс и понижение уровня, а затем набор воды, приводит к разрушению почвы, смыванию плодородного слоя, гибель мест нереста рыбы. Наиболее показательный пример губительного воздействия гидротехнических сооружений на водный бассейн и окружающую природу — это Каспийское море. После введения в эксплуатацию плотинного комплекса уровень воды в море изменился, стал другим кислородный обмен, уменьшилось поступление питательных веществ. Негативные последствия стали столь угрожающими для существования биосистемы моря в целом, что пришлось вносить коррективы в конструкцию плотины.

Водохранилища, создаваемые в районе тепловых и электрических станций, служат для сброса технологических вод. Сами по себе эти стоки не имеют существенных загрязнений, но несут в себе другую опасность для окружающей среды, они имеют повышенную температуру. В результате изменяется не только температурный режим водного объекта, но и климатические условия прилегающей территории. Происходят изменения и мутации у растений и животных.

Тепловые и электрические станции работают на разных видах топлива: твердом, жидком или газообразном. Несмотря на то, какой вид топлива используют станции, станции сжигают тысячи кубических метров кислорода и выбрасывают в атмосферу не меньшее число золы, продуктов горения и газов, которые содержат загрязняющие вещества. Эти вещества попадают в почву и воду не только непосредственно около станции, а по воздуху распространяются на значительные расстояния.

Атомные

Расщепление атома дало человечеству дополнительные энергетические ресурсы и возможности, а вместе с этим и новые проблемы. Экологические проблемы ядерной энергетики имеют специфический характер. В этой довольно новой отрасли есть проблемы присущие всей этой сфере. В процессе добычи сырья – уничтожается экология мест его залегания. Водоемы возле станций, предназначенные для слива охлаждающей воды, также формируют несвойственный этой природной зоне микроклимат. Есть и положительные стороны — практически отсутствуют выбросы, свойственные станциям, работающим на принципе сжигании сырья. Атомной энергетики экологические проблемы носят отложенный характер. Они связаны с производством топлива для этих станций и хранением отработанного.

Основной аргумент, приводимый в пользу расширения производства атомной энергии, — это ее низкая себестоимость. Кроме того, расположить АЭС могут на своей территории государства, которые не обладают необходимым сырьем. Атомная – это единственный выход для стран, в недрах которых нет сырья для других видов станций. Но так ли дешева атомная энергия? Если к стоимости сырья, станции и производственного процесса прибавить стоимость затрат по утилизации и хранению отработанного топлива, средства, потраченные на ликвидации различного рода поломок, аварий и катастроф, а также их последствий. Суммы, необходимые для лечения участников ликвидаций этих аварий, их детей, зараженной природы и так далее.

Первая атомная станция была построена в СССР в 1954 году. Через 32 года произошла авария на Чернобыльской станции, а еще через 25 – на станции Фукусима. Можно сказать, что всего лишь две аварии за более чем 60 лет, а можно сказать, что аварии происходят каждые 25-30 лет. Как бы ни вести статистику, для восстановления пораженной радиацией природной среды необходимо в каждом случае от 30 до 1000 лет. На экологические проблемы ядерной энергетики всерьез обратили внимание только после 1986 года, когда на Чернобыльской АЭС произошла авария. Эта реакция была схожа на панику. Много стран мира полностью отказались от строительства на своей территории атомных реакторов. Но экономика выдвигает свои аргументы, а текущая безопасность ядерного производства в разы выше других видов энергетики.

Экологические проблемы ядерной энергетики это не только проблемы «мирного» атома. Это еще флот, в том числе и в первую очередь военный, и оружие. Какие сюрпризы можно ожидать с этой стороны — никто не знает?

Видео — Ядерная энергетика и ее Альтернатива

  • Вопрос 3. Экономическая эффективность пп и мето­ды ее определения.
  • Вопрос 4. Экономический ущерб от загрязнения и методы его определения
  • Вопрос 5. Основные направления экологизации экономики России.
  • Вопрос 6. Лесное хозяйство и характеристика экологических последствий лесохозяйственной деятельности. Пути экологической оптимизации отрасли.
  • Вопрос 7. Возникновение внешних эффектов и их учет в эколого-экономическом развитии
  • Вопрос 9. Направления формирования экономического механизма природопользования
  • Вопрос 10. Виды и формы платы за природные ресурсы.
  • Вопрос 11. Техногенный тип экономики и его ограничения
  • Вопрос 12. Эколого-экономическое развитие в концепции устойчивости хозяйственных систем
  • Вопрос 13. Экосфера как сложная динамическая саморегулирующаяся система. Гомеостазис экосферы. Роль живого вещества.
  • Вопрос 14. Экосистема и биогеоценоз: определения сходство и различия.
  • Вопрос 15. Биологическая продуктивность (бп) экосистем (биогеоценозов).
  • Вопрос 16. Взаимосвязь биологической продуктивности и экологической стабильности.
  • Вопрос 17. Экологические сукцессии, естественные и искусственные. Использование в практических целях.
  • Вопрос 18. Методы управления популяциями и экосистемами (биогеоценозами).
  • Вопрос 19. Региональные и локальные системы природопользования.
  • Вопрос 20. Традиционное природопользование и его основные виды
  • 1. Традиционное природопользование и его основные виды.
  • 21. Экологические проблемы энергетики и пути их решения.
  • 21. Экологические проблемы энергетики и пути их решения.
  • 22. Экологические проблемы промышленности и пути их решения.
  • 23. Экологические проблемы сельского хозяйства и пути их решения.
  • 24. Экологические проблемы транспорта и пути их решения.
  • 25. Антропогенное воздействие на атмосферу и пути снижения негативного эффекта.
  • 26. Антропогенное воздействие на гидросферу и пути снижения негативного эффекта.
  • 27. Проблема рационального использования земельных ре­сурсов.
  • 31. Роль институционного фактора в концепции устойчивого развития.
  • 32. Антропогенные изменения климата.
  • 33. Основные механизмы взаимодействия гидросферы и атмосферы.
  • 34. Охрана видового и экосистемного разнообразия биосферы.
  • 35. Современные ландшафты. Классификация и распростра­нение.
  • 36. Вертикальная и горизонтальная структура ландшафтов.
  • 37. Проблемы обезлесения и опустынивания.
  • 38. Проблемы сохранения генетического разнообразия.
  • 39. Геоэкологические аспекты глобальных кризисных ситуа­ций: деградация систем жизнеобеспечения экосферы. Ресурс­ные проблемы.
  • 41. Экологическая экспертиза. Основные принципы. Закон рф «Об экологической экспертизе».
  • 42. Устойчивое развитие как основа рационального природо­пользования. Решения конференции в Рио-де-Жанейро (1992) и Всемирного саммита в Йоханнесбурге (2002).
  • 44. Роль автотранспорта в загрязнении окружающей среды.
  • 45. Земледелие как отраслевая система природопользования.
  • 46. Государственные природные заповедники России: статус, режим, функции, задачи и перспективы развития.
  • Вопрос 49. Государственные природные заповедники России: статус, режим, функции, задачи и перспективы развития.
  • Вопрос 51. Экологическая культура как фактор формирования и эво­люции систем природопользования.
  • Вопрос 52. Различия в потреблении природных ресурсов в странах разного типа.
  • 21. Экологические проблемы энергетики и пути их решения.

    В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия используются человеком после превращения ее в электрическую энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, а следовательно, и с поступлением продуктов горения в окружающую среду.

    Экологические проблемы теплоэнергетики

    Воздействие тепловых электростанций на окружающую среду во многом зависит от вида сжигаемого топлива.

    Твердое топливо . При сжигании твердого топлива в атмосферу поступают летучая зола с частицами не­догоревшего топлива, сернистый и серный ангидри­ды, оксиды азота, некоторое количество фтористых соединений, а также газообразные продукты непол­ного сгорания топлива. Летучая зола в некоторых слу­чаях содержит помимо нетоксичных составляющих и более вредные примеси. Так, в золе донецких антра­цитов в незначительных количествах содержится мы­шьяк, а в золе Экибастузского и некоторых других месторождений - свободный диоксид кремния, в золе сланцев и углей Канско-Ачинского бассейна - сво­бодный оксид кальция. К твердому топливу относятся уголь и торф.

    Жидкое топливо . При сжигании жидкого топлива (мазутов) с дымовыми газами в атмосферный воздух по­ступают: сернистый и серный ангидриды, оксиды азо­та, соединения ванадия, солей натрия, а также веще­ства, удаляемые с поверхности котлов при чистке. С экологических позиций жидкое топливо более «гигие­ничное». При этом полностью отпадает проблема золоотвалов, которые занимают значительные территории, исключают их полезное использование и являются ис­точником постоянных загрязнений атмосферы в райо­не станции из-за уноса части золы с ветрами. В продук­тах сгорания жидких видов топлива отсутствует лету­чая зола. К жидкому топливу относится природный газ(???).

    в качестве топлива на тепловых электростанциях используют уголь, нефть и нефтепро­дукты, природный газ и, реже, древесину и торф. Ос­новными компонентами горючих материалов являют­ся углерод, водород и кислород, в меньших количе­ствах содержится сера и азот, присутствуют также сле­ды металлов и их соединений (чаще всего оксиды и суль­фиды).

    В теплоэнергетике источником массированных атмос­ферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции, предприятия и установки паросилового хозяйства, т. е. любые предприятия, работа которых связана со сжиганием топлива.

    Наряду с газообразными выбросами теплоэнергети­ка производит огромные массы твердых отходов; к ним относятся зола и шлаки.

    Отходы углеобогатительных фабрик содержат 55-60% SiO2, 22-26% Аl2О3, 5-12% Fe2O3, 0,5-1% CaO, 4-4,5% К2О и Nа2О и до 5% С. Они поступают в отвалы, которые пылят, дымят и резко ухудшают состояние атмосферы и прилегающих территорий.

    Для электростанции, работающей на угле, требует­ся 3,6 млн т угля, 150 м3 воды и около 30 млрд м3 воздуха ежегодно. В приведенных цифрах не учтены нарушения окружающей среды, связанные с добычей и транспортировкой угля.

    Если учесть, что подобная электростанция активно работает несколько десятилетий, то ее воздействие вполне можно сравнить с действием вулкана. Но если последний обычно выбрасывает продукты вулканизма в больших количества разово, то электростанция дела­ет это постоянно.

    Загрязнение и отходы энергетических объектов в виде газовой, жидкой и твердой фазы распределяются на два потока: один вызывает глобальные изменения, а другой - региональные и локальные. Так же обстоит дело и в других отраслях хозяйства, но все же энерге­тика и сжигание ископаемого топлива остаются источ­ником основных глобальных загрязнителей. Они посту­пают в атмосферу, и за счет их накопления изменяется концентрация малых газовых составляющих атмосфе­ры, в том числе парниковых газов. В атмосфере появились газы, которые ранее в ней практически отсут­ствовали - хлорфторуглероды. Это глобальные заг­рязнители, имеющие высокий парниковый эффект и в то же время участвующие в разрушении озонового экрана стратосферы.

    Таким образом, следует отметить, что на современ­ном этапе тепловые электростанции выбрасывают в ат­мосферу около 20% от общего количества всех вредных отходов промышленности. Они существенно влияют на окружающую среду района их расположения и на со­стояние биосферы в целом. Наиболее вредны конденса­ционные электрические станции, работающие на низ­косортных видах топлива.

    Сточные воды ТЭС и ливневые стоки с их территорий, загрязненные отходами технологических циклов энер­гоустановок и содержащие ванадий, никель, фтор, фе­нолы и нефтепродукты, при сбросе в водоемы могут оказать влияние на качество воды, водные организмы. Изменение химического состава тех или иных веществ приводит к нарушению установившихся в водоеме ус­ловий обитания и сказывается на видовом составе и чис­ленности водных организмов и бактерий и в конечном счете может привести к нарушениям процессов само­очищения водоемов от загрязнений и к ухудшению их санитарного состояния.

    Представляет опасность и так называемое тепловое загрязнение водоемов с многообразными нарушения­ми их состояния. ТЭС производят энергию при помощи турбин, приводимых в движение нагретым паром. При работе турбин необходимо охлаждать водой от­работанный пар, поэтому от энергетической станции непрерывно отходит поток воды, подогретой обычно на 8-12 °С и сбрасываемой в водоем. Крупные ТЭС нуждаются в больших объемах воды. Они сбрасыва­ют в подогретом состоянии 80-90 м3/с воды. Это оз­начает, что в водоем непрерывно поступает мощный поток теплой воды примерно такого масштаба, как река Москва.

    Зона подогрева, образующаяся в месте впадения теплой «реки», представляет собой своеобразный уча­сток водоема, в котором температура максимальна в точке водосброса и уменьшается по мере удаления от нее. Зоны подогрева крупных ТЭС занимают пло­щадь в несколько десятков квадратных километров. Зимой в зоне подогрева образуются полыньи (в се­верных и средних широтах). В летние месяцы тем­пературы в зонах подогрева зависят от естественной температуры забираемой воды. Если в водоеме тем­пература воды 20 °С, то в зоне подогрева она может достигнуть 28-32°С.

    В результате повышения температур в водоеме и нарушения их естественного гидротермического ре­жима интенсифицируются процессы «цветения» воды, уменьшается способность газов растворяться в воде, меняются физические свойства воды, ускоряются все химические и биологические процессы, протекающие в ней, и т. д. В зоне подогрева снижается прозрач­ность воды, увеличивается рН, увеличивается скорость разложения легко окисляющихся веществ. Скорость фотосинтеза в такой воде заметно понижается.

    Экологические проблемы гидроэнергетики

    Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энерге­тическом балансе постепенно уменьшается. Это свя­зано как с исчерпанием наиболее дешевых ресурсов, так и с большой территориальной емкостью равнин­ных водохранилищ. Считается, что в перспективе мировое производство энергии ГЭС не будет превы­шать 5% от общей.

    Одной из важнейших причин уменьшения доли энер­гии, получаемой на ГЭС, является мощное воздействие всех этапов строительства и эксплуатации гидросоору­жений на окружающую среду.

    По данным разных исследований, одним из важнейших воздействий гидроэнер­гетики на окружающую среду является отчуждение значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет ис­пользования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоп­лено не менее 6 млн га земель. На их месте уничтоже­ны естественные экосистемы.

    Значительные площади земель вблизи водохрани­лищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, пере­ходят в категорию заболоченных. В равнинных усло­виях подтопленные земли могут составлять 10% и бо­лее от затопленных. Уничтожение земель и свойствен­ных им экосистем происходит также в результате их разрушения водой (абразии) при формировании бере­говой линии. Абразионные процессы обычно продолжа­ются десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ. Таким образом, со строительством во­дохранилищ связано резкое нарушение гидрологичес­кого режима рек, свойственных им экосистем и видо­вого состава гидробионтов.

    В водохранилищах резко усиливается прогревание вод, что интенсифицирует потерю ими кислорода и дру­гие процессы, обусловливаемые тепловым загрязнени­ем. Последнее, совместно с накоплением биогенных ве­ществ, создает условия для зарастания водоемов и ин­тенсивного развития водорослей, в том числе и ядови­тых сине-зеленых. По этим причинам, а также вслед­ствие медленной обновляемости вод резко снижается их способность к самоочищению.

    Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражаемость гельминтами. Снижаются вку­совые качества обитателей водной среды.

    Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т. п. Волга во многом потеряла свое значение как нерестилище для осетровых Каспия после строительства на ней каскада ГЭС.

    В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в транзитно-аккумулятивные. Кроме биогенных веществ здесь аккумулируются тяжелые металлы, радиоактив­ные элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают про­блематичной возможность использования территорий, занимаемых водохранилищами, после их ликвидации.

    Водохранилища оказывают заметное влияние на ат­мосферные процессы. Например, в засушливых (арид­ных) районах испарение с поверхности водохранилищ превышает испарение с равновеликой поверхности суши в десятки раз.

    С повышенным испарением связано понижение тем­пературы воздуха, увеличение туманных явлений. Раз­личие тепловых балансов водохранилищ и прилегаю­щей суши обусловливает формирование местных вет­ров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не всегда положитель­ную), изменение погоды. В ряде случаев в зоне водохра­нилищ приходится менять направление сельского хо­зяйства. Например в южных районах нашей страны некоторые теплолюбивые культуры (бахчевые) не ус­певают вызревать, повышается заболеваемость расте­ний, ухудшается качество продукции.

    Издержки гидростроительства для среды заметно меньше в горных районах, где водохранилища обычно невелики по площади. Однако в сейсмоопасных горных районах водохранилища могут провоцировать земле­трясения. Увеличивается вероятность оползневых яв­лений и вероятность катастроф в результате возможно­го разрушения плотин.

    В силу специфики технологии использования водной энергии гидроэнергетические объекты преобразуют природные процессы на весьма длительные сроки. На­пример водохранилище ГЭС (или система водохрани­лищ в случае каскада ГЭС) может существовать десятки и сотни лет, при этом на месте естественного водо­тока возникает техногенный объект с искусственным регулированием природных процессов - природно-техническая система (ПТС).

    Рассматривая воздействие ГЭС на окружающую сре­ду, следует все же отметить жизнесберегающую фун­кцию ГЭС. Так, выработка каждого млрд кВтч элект­роэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел./год.

    Проблемы ядерной энергетики

    Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. До­статочно отметить, что 0,5 кг ядерного топлива по­зволяет получать столько же энергии, сколько сжи­гание 1000 т каменного угля.

    Многолетний опыт эксплуатации АЭС во всех стра­нах показывает, что они не оказывают заметного вли­яния на окружающую среду. К 1998 г. среднее время эксплуатации АЭС составило 20 лет. Надежность, бе­зопасность и экономическая эффективность атомных электростанций опирается не только на жесткую регламентацию процесса функционирования АЭС, но и на сведение до абсолютного минимума влияния АЭС на ок­ружающую среду.

    При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду крайне незначительны. В среднем, они в 2-4 раза меньше, чем от ТЭС одинаковой мощности.

    До Чернобыльской катастрофы в нашей стране ника­кая отрасль производства не имела меньшего уровня производственного травматизма, чем АЭС. За 30 лет до трагедии при авариях, и то не по радиационным при­чинам, погибло 17 человек. После 1986 г. главную эко­логическую опасность АЭС стали связывать с возмож­ностью аварии. Хотя вероятность их на современных АЭС и невелика, но она не исключается.

    До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков эксплуатации. Имеются данные, что стоимость таких ликвидационных работ составляет от 1/6 до 1/3 от стоимости самих АЭС. В целом можно назвать следующие воздействия АЭС на среду:1 - разрушение экосистем и их элементов (почв, грунтов, во-доносных структур и т. п.) в местах добычи руд (особенно при открытом способе); 2 - изъятие земель под строительство самих АЭС; 3 - изъятие значительных объемов вод из различных источников и сброс подогретых вод; 4 - не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.

    Несомненно, что в ближайшей перспективе тепловая энергетика будет оставаться преобладающей в энергетическом балансе мира и отдельных стран. Велика вероятность увеличения доли углей и других видов менее чистого топлива в получении энергии. Некоторые пути и способы их использования позволяют существенно уменьшать отрицательное воздействие на среду. Эти способы базируются в основном на совершенствовании технологий подготовки топлива и улавливания вредных отходов. В их числе:

    1. Использование и совершенствование очистных устройств.

    2. Уменьшение поступления соединений серы в атмосферу посредством предварительного обессеривания (десульфурации) углей и других видов топлива (нефть, газ, горючие сланцы) химическими или физическими методами.

    3. Большие и реальные возможности уменьшения или стабилизации поступления загрязнений в среду связаны с экономией электроэнергии.

    4. Не менее значимы возможности экономии энергии в быту и на производстве за счет совершенствования изоляционных свойств зданий. Крайне расточительно использование электрической энергии для получения тепла. Поэтому прямое сжигание топлива для получения тепла, особенно газа, намного рациональнее, чем через превращение его в электричество, а затем вновь в тепло.

    5. Заметно повышается также КПД топлива при его использовании вместо ТЭС на ТЭЦ. + Использование альтернативной энергетики

    6. Использование по возможности альтернативных источников энергии.