Фундаментальные теории. Основные типы научных теорий как элементы современных научных систем. Почему отсутствует здравый смысл в объединении сильных, слабых и электромагнитных взаимодействий в современной теории поля

Становление физики (до 17 в.). Физические явления окружающего мира издавна привлекали внимание людей. Попытки причинного объяснения этих явлений предшествовали созданию Ф. в современном смысле этого слова. В греко-римском мире (6 в. до н. э. – 2 в. н. э.) впервые зародились идеи об атомном строении вещества (Демокрит , Эпикур , Лукреций),была разработана геоцентрическая система мира (Птолемей), установлены простейшие законы статики (правило рычага), открыты закон прямолинейного распространения и закон отражения света, сформулированы начала гидростатики (закон Архимеда), наблюдались простейшие проявления электричества и магнетизма.

Итог приобретённых знаний в 4 в. до н. э. был подведён Аристотелем . Физика Аристотеля включала отдельные верные положения, но в то же время в ней отсутствовали многие прогрессивные идеи предшественников, в частности атомная гипотеза. Признавая значение опыта, Аристотель не считал его главным критерием достоверности знания, отдавая предпочтение умозрительным представлениям. В средние века учение Аристотеля, канонизированное церковью, надолго затормозило развитие науки.

Наука возродилась лишь в 15–16 вв. в борьбе со схоластизированным учением Аристотеля. В середине 16 в. Н. Коперник выдвинул гелиоцентрическую систему мира и положил начало освобождению естествознания от теологии. Потребности производства, развитие ремёсел, судоходства и артиллерии стимулировали научные исследования, опирающиеся на опыт. Однако в 15–16 вв. экспериментальные исследования носили в основном случайный характер. Лишь в 17 в. началось систематическое применение экспериментального метода в Ф., и это привело к созданию первой фундаментальной физической теории – классической механики Ньютона.

Формирование физики как науки (начало 17 – конец 18 вв.).

Развитие Ф. как науки в современном смысле этого слова берёт начало с трудов Г. Галилея (1-я половина 17 в.), который понял необходимость математического описания движения. Он показал, что воздействие на данное тело окружающих тел определяет не скорость, как считалось в механике Аристотеля, а ускорение тела. Это утверждение представляло собой первую формулировку закона инерции. Галилей открыл принцип относительности в механике (см. Галилея принцип относительности), доказал независимость ускорения свободного падения тел от их плотности и массы, обосновывал теорию Коперника. Значительные результаты были получены им и в др. областях Ф. Он построил зрительную трубу с большим увеличением и сделал с её помощью ряд астрономических открытий (горы на Луне, спутники Юпитера и др.). Количественное изучение тепловых явлений началось после изобретения Галилсем первого термометра.

В 1-й половине 17 в. началось успешное изучение газов. Ученик Галилея Э. Торричелли установил существование атмосферного давления и создал первый барометр. Р. Бойль и Э. Мариотт исследовали упругость газов и сформулировали первый газовый закон, носящий их имя. В.Снеллиус и Р. Декарт открыли закон преломления света. В это же время был создан микроскоп. Значительный шаг вперёд в изучении магнитных явлений был сделан в самом начале 17 в. У.Гильбертом . Он доказал, что Земля является большим магнитом, и первый строго разграничил электрические и магнитные явления.

Основным достижением Ф. 17 в. было создание классической механики. Развивая идеи Галилея, Х.Гюйгенса и др. предшественников, И. Ньютон в труде "Математические начала натуральной философии" (1687) сформулировал все основные законы этой науки (см. Ньютона законы механики). При построении классической механики впервые был воплощён идеал научной теории, существующий и поныне. С появлением механики Ньютона было окончательно понято, что задача науки состоит в отыскании наиболее общих количественно формулируемых законов природы.

Наибольших успехов механика Ньютона достигла при объяснении движения небесных тел. Исходя из законов движения планет, установленных И. Кеплером на основе наблюдений Т. Браге , Ньютон открыл закон всемирного тяготения (см. Ньютона закон тяготения). С помощью этого закона удалось с замечательной точностью рассчитать движение Луны, планет и комет Солнечной системы, объяснить приливы и отливы в океане. Ньютон придерживался концепции дальнодействия, согласно которой взаимодействие тел (частиц) происходит мгновенно непосредственно через пустоту; силы взаимодействия должны определяться экспериментально. Им были впервые четко сформулированы классические представления об абсолютном пространстве как вместилище материи, не зависящем от её свойств и движения, и абсолютном равномерно текущем времени. Вплоть до создания теории относительности эти представления не претерпели никаких изменений.

Большое значение для развития Ф. имело открытие Л. Гальвани и А. Вольта электрического тока. Создание мощных источников постоянного тока – гальванических батарей – дало возможность обнаружить и изучить многообразные действия тока. Было исследовано химическое действие тока (Г. Дэви , М. Фарадей). В. В. Петров получил электрическую дугу. Открытие Х. К. Эрстедом (1820) действия электрического тока на магнитную стрелку доказало связь между электричеством и магнетизмом. Основываясь на единстве электрических и магнитных явлений, А. Ампер пришёл к выводу, что все магнитные явления обусловлены движущимися заряженными частицами – электрическим током. Вслед за этим Ампер экспериментально установил закон, определяющий силу взаимодействия электрических токов (Ампера закон).

В 1831 Фарадей открыл явление электромагнитной индукции (см. Индукция электромагнитная). При попытках объяснения этого явления с помощью концепции дальнодействия встретились значительные затруднения. Фарадей высказал гипотезу (ещё до открытия электромагнитной индукции), согласно которой электромагнитные взаимодействия осуществляются посредством промежуточного агента – электромагнитного поля (концепция близкодействия). Это послужило началом формирования новой науки о свойствах и законах поведения особой формы материи – электромагнитного поля.

Ещё до открытия этого закона С. Карно в труде "Размышления о движущей силе огня и о машинах, способных развивать эту силу" (1824) получил результаты, послужившие основой для др. фундаментального закона теории теплоты – второго начала термодинамики . Этот закон сформулирован в работах Р. Клаузиуса (1850) и У. Томсона (1851). Он является обобщением опытных данных, свидетельствующих о необратимости тепловых процессов в природе, и определяет направление возможных энергетических процессов. Значительную роль в построении термодинамики сыграли исследования Ж. Л. Гей-Люссака , на основе которых Б. Клапейроном было найдено уравнение состояния идеального газа, обобщённое в дальнейшем Д. И. Менделеевым .

Одновременно с развитием термодинамики развивалась молекулярно-кинетическая теория тепловых процессов. Это позволило включить тепловые процессы в рамки механической картины мира и привело к открытию нового типа законов – статистических, в которых все связи между физическими величинами носят вероятностный характер.

На первом этапе развития кинетической теории наиболее простой среды – газа – Джоуль, Клаузиус и др. вычислили средние значения различных физических величин: скорости молекул, числа их столкновений в секунду, длины свободного пробега и т.д. Была получена зависимость давления газа от числа молекул в единице объёма и средней кинетической энергии поступательного движения молекул. Это позволило вскрыть физический смысл температуры как меры средней кинетической энергии молекул.

Второй этап развития молекулярно-кинетической теории начался с работ Дж. К. Максвелла . В 1859, введя впервые в Ф. понятие вероятности, он нашёл закон распределения молекул по скоростям (см. Максвелла распределение). После этого возможности молекулярно-кинетической теории необычайно расширились и привели в дальнейшем к созданию статистической механики. Л.Больцман построил кинетическую теорию газов и дал статистическое обоснование законов термодинамики. Основная проблема, которую в значительной степени удалось решить Больцману, заключалась в согласовании обратимого во времени характера движения отдельных молекул с очевидной необратимостью макроскопических процессов. Термодинамическому равновесию системы, по Больцману, соответствует максимум вероятности данного состояния. Необратимость процессов связана со стремлением систем к наиболее вероятному состоянию. Большое значение имела доказанная им теорема о равномерном распределении средней кинетической энергии по степеням свободы.

Классическая статистическая механика была завершена в работах Дж. У. Гиббса (1902), создавшего метод расчёта функций распределения для любых систем (а не только газов) в состоянии термодинамического равновесия. Всеобщее признание статистическая механика получила в 20 в. после создания А. Эйнштейном и М. Смолуховским (1905–06) на основе молекулярно-кинетической теории количественной теории броуновского движения , подтвержденной в опытах Ж. Б. Перрена .

Во 2-й половине 19 в. длительный процесс изучения электромагнитных явлений был завершен Максвеллом. В своей основной работе "Трактат об электричестве и магнетизме" (1873) он установил уравнения для электромагнитного поля (носящие его имя), которые объясняли все известные в то время факты с единой точки зрения и позволяли предсказывать новые явления. Электромагнитную индукцию Максвелл интерпретировал как процесс порождения переменным магнитным полем вихревого электрического поля. Вслед за этим он предсказал обратный эффект – порождение магнитного поля переменным электрическим полем (см. Ток смещения). Важнейшим результатом теории Максвелла был вывод о конечности скорости распространения электромагнитных взаимодействий, равной скорости света. Экспериментальное обнаружение электромагнитных волн Г. Р. Герцем (1886–89) подтвердило справедливость этого вывода. Из теории Максвелла вытекало, что свет имеет электромагнитную природу. Тем самым оптика стала одним из разделов электродинамики. В самом конце 19 в. П. Н. Лебедев обнаружил на опыте и измерил давление света, предсказанное теорией Максвелла, а А. С. Попов впервые использовал электромагнитные волны для беспроволочной связи.

Опыт показывал, что сформулированный Галилеем принцип относительности, согласно которому механические явления протекают одинаково во всех инерциальных системах отсчёта , справедлив и для электромагнитных явлений. Поэтому уравнения Максвелла не должны изменять свою форму (должны быть инвариантными) при переходе от одной инерциальной системы отсчёта к другой. Однако оказалось, что это справедливо лишь в том случае, если преобразования координат и времени при таком переходе отличны от преобразований Галилея, справедливых в механике Ньютона. Лоренц нашёл эти преобразования (Лоренца преобразования), но не смог дать им правильную интерпретацию. Это было сделано Эйнштейном в его частной теории относительности.

Открытие частной теории относительности показало ограниченность механической картины мира. Попытки свести электромагнитные процессы к механическим процессам в гипотетической среде – эфире оказались несостоятельными. Стало ясно, что электромагнитное поле представляет собой особую форму материи, поведение которой не подчиняется законам механики.

В 1916 Эйнштейн построил общую теорию относительности – физическую теорию пространства, времени и тяготения. Эта теория ознаменовала новый этап в развитии теории тяготения.

На рубеже 19–20 вв., ещё до создания специальной теории относительности, было положено начало величайшей революции в области Ф., связанной с возникновением и развитием квантовой теории.

В конце 19 в. выяснилось, что распределение энергии теплового излучения по спектру, выведенное из закона классической статистической физики о равномерном распределении энергии по степеням свободы, противоречит опыту. Из теории следовало, что вещество должно излучать электромагнитные волны при любой температуре, терять энергию и охлаждаться до абсолютного нуля, т. е. что тепловое равновесие между веществом и излучением невозможно. Однако повседневный опыт противоречил этому выводу. Выход был найден в 1900 М. Планком , показавшим, что результаты теории согласуются с опытом, если предположить, в противоречии с классической электродинамикой, что атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия каждого такого кванта прямо пропорциональна частоте, а коэффициент пропорциональности является квант действия h = 6,6×10 -27 эрг ×сек, получивший впоследствии название постоянной Планка.

В 1905 Эйнштейн расширил гипотезу Планка, предположив, что излучаемая порция электромагнитной энергии распространяется и поглощается также только целиком, т. с. ведёт себя подобно частице (позднее она была названа фотоном). На основе этой гипотезы Эйнштейн объяснил закономерности фотоэффекта , не укладывающиеся в рамки классической электродинамики.

Т. о., на новом качественном уровне была возрождена корпускулярная теория света. Свет ведёт себя подобно потоку частиц (корпускул); однако одновременно ему присущи и волновые свойства, которые проявляются, в частности, в дифракции и интерференции света. Следовательно, несовместимые с точки зрения классической Ф. волновые и корпускулярные свойства присущи свету в равной мере (дуализм света). "Квантование" излучения приводило к выводу, что энергия внутриатомных движений также может меняться только скачкообразно. Такой вывод был сделан Н.Бором в 1913.

В 1926 Шрёдингер, пытаясь получить дискретные значения энергии атома из уравнения волнового типа, сформулировал основное уравнение квантовой механики, названное его именем. В.Гейзенберг и Борн (1925) построили квантовую механику в др. математической форме – т. н. матричную механику.

Согласно принципу Паули, энергия всей совокупности свободных электронов металла даже при абсолютном нуле отлична от нуля. В невозбуждённом состоянии все уровни энергии, начиная с нулевого и кончая некоторым максимальным уровнем (уровнем Ферми), оказываются занятыми электронами. Эта картина позволила Зоммерфельду объяснить малость вклада электронов в теплоёмкость металлов: при нагревании возбуждаются только электроны вблизи уровня Ферми.

В работах Ф. Блоха , Х. А. Бете и Л. Неель Гинзбурга квантовой электродинамики. Первые попытки непосредственного исследования строения атомного ядра относятся к 1919, когда Резерфорд путём обстрела стабильных ядер азота a-частицами добился их искусственного превращения в ядра кислорода. Открытие нейтрона в 1932 Дж. Чедвиком привело к созданию современной протонно-нейтронной модели ядра (Д. Д. Иваненко , Гейзенберг). В 1934 супруги И. и Ф. Жолио-Кюри открыли искусственную радиоактивность.

Создание ускорителей заряженных частиц позволило изучать различные ядерные реакции. Важнейшим результатом этого этапа Ф. явилось открытие деления атомного ядра.

В 1939–45 была впервые освобождена ядерная энергия с помощью цепной реакции деления 235 U и создана атомная бомба. Заслуга использования управляемой ядерной реакции деления 235 U в мирных, промышленных целях принадлежит СССР. В 1954 в СССР была построена первая атомная электростанция (г. Обнинск). Позже рентабельные атомные электростанции были созданы во многих странах.

нейтрино и открыто много новых элементарных частиц, в том числе крайне нестабильные частицы – резонансы , среднее время жизни которых составляет всего 10 -22 –10 -24 сек. Обнаруженная универсальная взаимопревращаемость элементарных частиц указывала на то, что эти частицы не элементарны в абсолютном смысле этого слова, а имеют сложную внутреннюю структуру, которую ещё предстоит открыть. Теория элементарных частиц и их взаимодействий (сильных, электромагнитных и слабых) составляет предмет квантовой теории поля – теории, ещё далёкой от завершения.

Главное утверждение этой заметки состоит в том, что ядерная физика, которая вот уже лет 70 оставалась чисто эмпирической теорией, стала мало-помалу выводиться из первых принципов, из динамики кварков и глюонов.

Может показаться не очень понятным, а какая вообще разница -- эмпирическая у нас теория или фундаментальная? Чем одно предпочтительнее другого? Про это я и хотел бы здесь подробно рассказать.

1. Что такое эмпирические законы и что такое фундаментальная теория.

Рассмотрим конкретный пример -- движение планет вокруг Солнца.

Вначале Тихо Браге много лет следил за положением планет, но не пытался найти в них математический закон. Затем Кеплер взял эти записи и выяснил, что планеты движутся по эллипсам, в одном из фокусов которых находится Солнце. Кроме того, он заметил, что движение планет по эллипсам не равномерное, а такое, чтоб выполнялись некоторые законы (известные сейчас как законы Кеплера).

Это -- пример описательной, эмпирической теории. У нас есть формула -- т.е. просто обобщение экспериментальных данных, и вроде как природа этой формуле подчиняется, и на основе её можно делать предсказания относительно движения этих планет в будущем. Однако она не вычислена, не выведена ниоткуда, а значит, непонятно, какое свойство природы она описывает. Появляются вопросы, на которые в рамках этой описательной теории не ответишь. Обязаны ли быть только эллипсы, или же возможны другие орбиты, например, в форме восьмерки, а нам просто повезло, что планеты в солнечной системе вращаются именно так? А какого размера могут быть эти эллипсы, есть ли какие-то ограничения на их полуоси, на их вытянутость? А каковы будут орбиты планет, вращающиеся вокруг других звезд -- может всё это зависит от свойства центральной звезды? А как будут вращаться вокруг Солнца очень маленькие тела, размером с кирпич?

В общем, в эмпирических теориях/моделях каждый конкретный случай -- это отдельная сущность, отдельная данность свыше . Нет универсальности, нет понимания, в чём причина таких простых законов. (А они действительно чрезвычайно просты по сравнению теми петляниям и попытным движением, которое мы ВИДИМ с Земли.)

Ньютон построил точную, фундаментальную, глубинную теорию этого движения. Исходя из одного единственного закона -- всемирного тяготения -- он вывел эллипсы, все законы Кеплера, для всех планет и вообще для любых тел. Поставленные выше вопросы сразу же получают ответ.

Итак, в фундаментальные теории данность свыше только одна -- исходные уравнения. Все частные случае отсюда следуют.

2. Еще немного про эмпирические теории.

Примеры разных эмпирических теорий:

Вся средневековая (ал)химия до Лавуазье
-- термодинамика в 19 веке, до развития статистической физики
-- периодический закон Менделеева до создания квантовой физики
-- ранняя теория атомных спектров, основанная на постулатах Бора, до создания квантовой механики
-- множество теорий, описывающих свойства вещества, -- магнетизм, сверхпроводимость, сверхтекучесть, и т.п. -- до их микроскопической формулировки.

3. Теперь вернемся к ядерным силам.

Законы Кеплера -- это еще самая "чистейшая" из эмпирических теорий. В ней нет подгоночных параметров . В большинстве же эмпирических теорий не просто постулируются (на основе экспериментальных наблюдений) какие-то простые законы, но еще в них присутствуют некие численные параметры. Эти параметры просто подбираются так, чтоб данные описывались наилучшим образом. Откуда эти параметры берутся и почему они равны именно этим значениям, в эмпирических теориях не обсуждается.

Ядерная физика, которая есть просто определенная разновидность адронной физики низких энергий, одна из самых "грязных" -- в смысле, одна из самых "запараметризованных" -- из эмпирических теорий.

Экспериментальных данных много, поэтому обобщить их, увидеть в них какие-то простые закономерности нетрудно. Эти закономерности формулируются в виде ядерных нуклон-нуклонных сил плюс еще некоторые простые законы (на них были основаны ранние модели ядра: капельная модель, оболочечная модель). Это всё эмпирические теории. На основе них можно производить расчеты, чем физики-ядерщики уже 70 лет и занимаются. Можно даже предсказывать свойства еще не открытых ядер и т.д. Это всё работает.

Настоящего теоретика это не может удовлетворить именно по той же причине, что и раньше. В таком описании каждая экспериментальная особенность -- это "данность свыше". Профиль нуклон-нуклонных сил, профиль трехнуклонного взаимодействия (оно вовсе не разлагается в простую сумму попарных сил), сложный закон изменения этих сил при повышении температуры в ядре, тенденция образовывать особенно устойчивые островки внутри ядер...

Но это всё были только нуклоны. А ведь в ядро можно поместить и более экзотические частицы, лямбда-гипероны, сигма-гипероны и т.д. и изучать свойства этих гипер-ядер. И опять -- для каждого нового гиперона приходится извлекать из опыта закон парного взаимодействия, как друг с другом, так и с нуклонами, и т.д.

ВСЕ эти вещи в эмпирической теории приходится определять из экспериментальных данных отдельно. Численные параметры в этих моделях -- массы, коэффициенты связи разных частиц друг с другом и т.д. -- тоже не сосчитаешь, а надо подбирать вручную, чтоб кривые наилучшим образом описывали данные.

Это очень досадно, потому что мы-то знаем, что всё это должно сводиться к взаимодействую кварков и глюонов. Более того, физики знают ТО САМОЕ уравнение, из решения которого должно получиться всё вышеперечисленное: и массы, и коэффициенты связи, и профиль потенциала нуклон-нуклонных сил. Беда лишь в том, что это уравнение очень трудно решить .

Это примерно, как если бы у преступника в руках была банковская карточка с миллионом долларов, но он не знал бы пин-кода:) Он бы всеми силами искал способ его узнать, не находил бы себе места. Примерно такое ощущение и у физиков, только они сдерживаются в проявлениях:)

Подведу итог про теории разного уровня.

1. Чисто эмпирические теории. Есть законы, полученные обобщением экспериментальных данных, но откуда они берутся и что подразумевают -- непонятно. Никакой глубокой точной теории нет.

2. Глубинный закон есть, но он слишком сложен, и его решения для изученных в эксперименте ситуаций получить не удается. В этом случае он ничем нам не помогает, и нам всё равно приходится прибегать к эмпирическим моделям.

3. Глубинные уравнения удается решить численно, на компьютере. Тогда законы, построенные в эмпирической теории можно проверять. Если они подтверждаются, то говорят, что этот закон выведен из первых принципов.

4. Глубинная теория допускает аналитическое решение. Есть формулы для всего, что надо.

В заметке Наступает новая эра в теоретической ядерной физике как раз описывается, что ядерная физика постепенно переходит из категории 2 в категорию 3.

Страница 3 из 7

III. Фундаментальные теории физики

Классическая механика Ньютона

Фундаментальное значение для всей Ф. имело введение Ньютоном понятия состояния. Первоначально оно было сформулировано для простейшей механической системы – системы материальных точек. Именно для материальных точек непосредственно справедливы законы Ньютона. Во всех последующих физических теориях понятие состояния было одним из основных. Состояние механической системы полностью определяется координатами и импульсами всех образующих систему тел. Если известны силы взаимодействия тел, определяющие их ускорения, то по значениям координат и импульсов в начальный момент времени уравнения движения механики Ньютона (второй закон Ньютона) позволяют однозначно установить значения координат и импульсов в любой последующий момент времени. Координаты и импульсы – основные величины в классической механике; зная их, можно вычислить значение любой др. механической величины: энергии, момента количества движения и др. Хотя позднее выяснилось, что ньютоновская механика имеет ограниченную область применения, она была и остаётся тем фундаментом, без которого построение всего здания современной Ф. было бы невозможным.

Механика сплошных сред

Газы, жидкости и твёрдые тела в механике сплошных сред рассматриваются как непрерывные однородные среды. Вместо координат и импульсов частиц состояние системы однозначно характеризуется следующими функцияциями координат (х, у, z) и времени (t): плотностью р (х, у, z, t), давлением Р (х, у, z, t) и гидродинамической скоростью v (х, у, z, t), с которой переносится масса. Уравнения механики сплошных сред позволяют установить значения этих функций в любой последующий момент времени, если известны их значения в начальный момент и граничные условия.

Эйлера уравнение, связывающее скорость течения жидкости с давлением, вместе с неразрывности уравнением, выражающим сохранение вещества, позволяют решать любые задачи динамики идеальной жидкости. В гидродинамике вязкой жидкости учитывается действие сил трения и влияние теплопроводности, которые приводят к диссипации механической энергии, и механика сплошных сред перестаёт быть «чистой механикой»: становятся существенными тепловые процессы. Лишь после создания термодинамики была сформулирована полная система уравнений, описывающая механические процессы в реальных газообразных, жидких и твёрдых телах. Движение электропроводящих жидкостей и газов исследуется в магнитной гидродинамике. Колебания упругой среды и распространение в ней волн изучаются в акустике.

Термодинамика

Всё содержание термодинамики является в основном следствием двух начал: первого начала – закона сохранения энергии, и второго начала, из которого следует необратимость макроскопических процессов. Эти начала позволяют ввести однозначные функции состояния: внутреннюю энергию и энтропию. В замкнутых системах внутренняя энергия остаётся неизменной, а энтропия сохраняется только при равновесных (обратимых) процессах. При необратимых процессах энтропия возрастает, и её рост наиболее полно отражает определённую направленность макроскопических процессов в природе. В термодинамике основными величинами, задающими состояние системы, – термодинамическими параметрами – являются в простейшем случае давление, объём и температура. Связь между ними даётся термическим уравнением состояния (а зависимость энергии от объёма и температуры – калорическим уравнением состояния). Простейшее термическое уравнение состояния – уравнение состояния идеального газа (Клапейрона уравнение).

В классической термодинамике изучают состояния теплового равновесия и равновесные (протекающие бесконечно медленно) процессы. Время не входит в основные уравнения. Впоследствии (начиная с 30-х гг. 20 в.) была создана термодинамика неравновесных процессов. В этой теории состояние определяется через плотность, давление, температуру, энтропию и др. величины (локальные термодинамические параметры), рассматриваемые как функции координат и времени. Для них записываются уравнения переноса массы, энергии, импульса, описывающие эволюцию состояния системы с течением времени (уравнения диффузии и теплопроводности, Навье – Стокса уравнения). Эти уравнения выражают локальные (т. е. справедливые для данного бесконечно малого элемента объёма) законы сохранения указанных физ. величин.

Статистическая физика (статистическая механика)

В классической статистической механике вместо задания координат ri, и импульсов pi частиц системы задаётся функция распределения частиц по координатам и импульсам, f (ri, pi,..., rN, pN, t), имеющая смысл плотности вероятности обнаружения наблюдаемых значений координат и импульсов в определённых малых интервалах в данный момент времени t (N – число частиц в системе). Функция распределения f удовлетворяет уравнению движения (уравнению Лиувилля), имеющему вид уравнения непрерывности в пространстве всех r, и pi (т. е. в фазовом пространстве).

Уравнение Лиувилля однозначно определяет f в любой последующий момент времени по заданному её значению в начальный момент, если известна энергия взаимодействия между частицами системы. Функция распределения позволяет вычислить средние значения плотностей вещества, энергии, импульса и их потоков, а также отклонения их от средних значений – флуктуации. Уравнение, описывающее эволюцию функции распределения для газа, было впервые получено Больцманом (1872) и называлось кинетическим уравнением Больцмана.

Гиббс получил выражение для функции распределения произвольной системы, находящейся в равновесии с термостатом (каноническое Гиббса распределение). Эта функция распределения позволяет по известному выражению энергии как функции координат и импульсов частиц (функции Гамильтона) вычислить все потенциалы термодинамические, что является предметом статистической термодинамики.

Процессы, возникающие в системах, выведенных из состояния термодинамического равновесия, необратимы и изучаются в статистической теории неравновесных процессов (эта теория вместе с термодинамикой неравновесных процессов образует кинетику физическую). В принципе, если функция распределения известна, можно определить любые макроскопические величины, характеризующие систему в неравновесном состоянии, и проследить за их изменением в пространстве с течением времени.

Для вычисления физических величин, характеризующих систему (средние плотности числа частиц, энергии и импульса), не требуется знания полной функции распределения. Достаточно более простых функций распределения: одночастичных, дающих среднее число частиц с данными значениями координат и импульсов, и двухчастичных, определяющих взаимное влияние (корреляцию) двух частиц. Общий метод получения уравнений для таких функций был разработан (в 40-х гг. 20 в.) Боголюбовым, Борном, Г. Грином (англ. физик) и др. Уравнения для одночастичной функции распределения, построение которых возможно для газов малой плотности, называются кинетическими. К их числу относится кинетическое уравнение Больцмана. Разновидности уравнения Больцмана для ионизованного газа (плазмы) – кинетические уравнения Ландау и А. А. Власова (30–40-е гг. 20 в.).

В последние десятилетия всё большее значение приобретает исследование плазмы. В этой среде основную роль играют электромагнитные взаимодействия заряженных частиц, и лишь статистическая теория, как правило, способна дать ответ на различные вопросы, связанные с поведением плазмы. В частности, она позволяет исследовать устойчивость высокотемпературной плазмы во внешнем электромагнитном поле. Эта задача чрезвычайно актуальна в связи с проблемой управляемого термоядерного синтеза.

Электродинамика

Состояние электромагнитного поля в теории Максвелла характеризуется двумя основными векторами: напряжённостью электрического поля Е и магнитной индукцией В, являющимися функциями координат и времени. Электромагнитные свойства вещества задаются тремя величинами: диэлектрической проницаемостью?, магнитной проницаемостью (и удельной электропроводностью?, которые должны быть определены экспериментально. Для векторов Е и В и связанных с ними вспомогательных векторов электрической индукции D и напряжённости магнитного поля Н записывается система линейных дифференциальных уравнений с частными производными – Максвелла уравнения. Эти уравнения описывают эволюцию электромагнитного поля. По значениям характеристик поля в начальный момент времени внутри некоторого объёма и по граничным условиям на поверхности этого объёма можно найти Е и В в любой последующий момент времени. Эти векторы определяют силу, действующую на заряженную частицу, движущуюся с определённой скоростью в электромагнитном поле (Лоренца силу).
Основатель электронной теории Лоренц сформулировал уравнения, описывающие элементарные электромагнитные процессы. Эти уравнения, называемые Лоренца – Максвелла уравнениями, связывают движение отдельных заряженных частиц с создаваемым ими электромагнитным полем.

Опираясь на представления о дискретности электрических зарядов и уравнения для элементарных электромагнитных процессов, можно распространить методы статистической механики на электромагнитные процессы в веществе. Электронная теория позволила вскрыть физический смысл электромагнитных характеристик вещества?, ?, ? и дала возможность рассчитывать значения этих величин в зависимости от частоты, температуры, давления и т.д.

Частная (специальная) теория относительности. Релятивистская механика

В основе частной теории относительности – физической теории о пространстве и времени при отсутствии полей тяготения – лежат два постулата: принцип относительности и независимость скорости света от движения источника. Согласно принципу относительности Эйнштейна, любые физические явления – механические, оптические, тепловые и т.д. – во всех инерциальных системах отсчёта при одинаковых условиях протекают одинаково. Это означает, что равномерное и прямолинейное движение системы не влияет на ход процессов в ней. Все инерциальные системы отсчёта равноправны (не существует выделенной, «абсолютно покоящейся» системы отсчёта, как не существует абсолютных пространства и времени). Поэтому скорость света в вакууме во всех инерциальных системах отсчёта одинакова. Из этих двух постулатов вытекают преобразования координат и времени при переходе от одной инерциальной системы к другой – Лоренца преобразования. Из преобразований Лоренца получаются основные эффекты частной теории относительности: существование предельной скорости, совпадающей со скоростью света в вакууме с (любое тело не может двигаться со скоростью, превышающей с, и с является максимальной скоростью передачи любых взаимодействий); относительность одновременности (события, одновременные в одной инерциальной системе отсчёта, в общем случае не одновременны в другой); замедление течения времени и сокращение продольных – в направлении движения – размеров тела (все физические процессы в теле, движущемся со скоростью v относительно некоторой инерциальной системы отсчёта, протекают в раз медленнее, чем те же процессы в данной инерциальной системе, и во столько же раз уменьшаются продольные размеры тела). Из равноправия всех инерциальных систем отсчёта следует, что эффекты замедления времени и сокращения размеров тел являются не абсолютными, а относительными, зависящими от системы отсчёта.

Законы механики Ньютона перестают быть справедливыми при больших (сравнимых со скоростью света) скоростях движения. Сразу же после создания теории относительности были найдены релятивистские уравнения движения, обобщающие уравнения движения механики Ньютона. Эти уравнения пригодны для описания движения частиц со скоростями, близкими к скорости света. Исключительно важное значение для Ф. получили два следствия релятивистской механики: зависимость массы частицы от скорости и универсальная связь между энергией и массой (см. Относительности теория).

При больших скоростях движения любая физическая теория должна удовлетворять требованиям теории относительности, т. е. быть релятивистски-инвариантной. Законы теории относительности определяют преобразования при переходе от одной инерциальной системы отсчёта к другой не только координат и времени, но и любой физической величины. Эта теория вытекает из принципов инвариантности, или симметрии в Ф. (см. Симметрия в физике).

Общая теория относительности (теория тяготения)

Из четырёх типов фундаментальных взаимодействий – гравитационных, электромагнитных, сильных и слабых – первыми были открыты гравитационные взаимодействия, или силы тяготения. На протяжении более двухсот лет никаких изменений в основы теории гравитации, сформулированной Ньютоном, внесено не было. Почти все следствия теории находились в полном согласии с опытом.

Во 2-м десятилетии 20 в. классическая теория тяготения была революционным образом преобразована Эйнштейном. Теория тяготения Эйнштейна, в отличие от всех прочих теорий, была создана без стимулирующей роли новых экспериментов, путём логического развития принципа относительности применительно к гравитационным взаимодействиям, и получила название общей теории относительности. Эйнштейн по-новому интерпретировал установленный ещё Галилеем факт равенства гравитационной и инертной масс (см. Масса). Это равенство означает, что тяготение одинаковым образом искривляет пути всех тел. Поэтому тяготение можно рассматривать как искривление самого пространства-времени. Теория Эйнштейна вскрыла глубокую связь между геометрией пространства-времени и распределением и движением масс. Компоненты т. н. метрического тензора, характеризующие метрику пространства-времени, одновременно являются потенциалами гравитационного поля, т. е. определяют состояние гравитационного поля. Гравитационное поле описывается нелинейными уравнениями Эйнштейна. В приближении слабых полей из них вытекает существование гравитационных волн, пока не обнаруженных экспериментально (см. Гравитационное излучение).

Гравитационные силы – самые слабые из фундаментальных сил в природе. Для протонов они примерно в 1036 раз слабее электромагнитных. В современной теории элементарных частиц гравитационные силы не учитываются, т.к. полагают, что они не играют заметной роли. Роль гравитационных сил становится решающей при взаимодействиях тел космических размеров; они определяют также структуру и эволюцию Вселенной.

Теория тяготения Эйнштейна привела к новым представлениям об эволюции Вселенной. В середине 20-х гг. А. А. Фридман нашёл нестационарное решение уравнений гравитационного поля, соответствующее расширяющейся Вселенной. Этот вывод был подтвержден наблюдениями Э. Хаббла, открывшего закон красного смещения для галактик (означающий, что расстояния между любыми галактиками увеличиваются с течением времени). Др. пример предсказания теории – возможность неограниченного сжатия звёзд достаточно большой массы (больше 2–3 солнечных масс) с образованием т. н. «чёрных дыр». Имеются определённые указания (наблюдения за двойными звёздами – дискретными источниками рентгеновских лучей) на существование подобных объектов.

Общая теория относительности, как н квантовая механика, – великие теории 20 в. Все предшествующие теории, включая специальную теорию относительности, обычно относят к классической Ф. (иногда классической Ф. называют всю неквантовую Ф.).

Квантовая механика

Состояние микрообъекта в квантовой механике характеризуется волновой функцией?. Волновая функция имеет статистический смысл (Борн, 1926): она представляет собой амплитуду вероятности, т. е. квадрат её модуля, ???2, есть плотность вероятности нахождения частицы в данном состоянии. В координатном представлении? = ?(х, у, z, t) и величина???2?x?y?z определяет вероятность того, что координаты частицы в момент времени t лежат внутри малого объёма?x?y?z около точки с координатами х, у, z. Эволюция состояния квантовой системы однозначно определяется с помощью Шрёдингера уравнения.
Волновая функция даёт полную характеристику состояния. Зная?, можно вычислить вероятность определённого значения любой относящейся к частице (или системе частиц) физические величины и средние значения всех этих физических величин. Статистические распределения по координатам и импульсам не являются независимыми, из чего следует, что координата и импульс частицы не могут иметь одновременно точных значений (принцип неопределённости Гейзенберга); их разбросы связаны неопределённостей соотношением. Соотношение неопределённостей имеет место также для энергии и времени.

В квантовой механике момент импульса, его проекция, а также энергия при движении в ограниченной области пространства могут принимать лишь ряд дискретных значений. Возможные значения физических величин являются собственными значениями операторов, которые в квантовой механике ставятся в соответствие каждой физической величине. Физическая величина принимает определённое значение с вероятностью, равной единице, лишь в том случае, если система находится в состоянии, изображаемом собственной функцией соответствующего оператора.
Квантовая механика Шрёдингера – Гейзенберга не удовлетворяет требованиям теории относительности, т. е. является нерелятивистской. Она применима для описания движения элементарных частиц и слагающих их систем со скоростями, много меньшими скорости света.
С помощью квантовой механики была построена теория атомов, объяснена химическая связь, в том числе понята природа ковалентной химической связи; при этом было открыто существование специфического обменного взаимодействия – чисто квантового эффекта, не имеющего аналога в классической Ф. Обменная энергия играет главную роль в образовании ковалентной связи как в молекулах, так и в кристаллах, а также в явлениях ферромагнетизма и антиферромагнетизма. Эта энергия имеет важное значение во внутриядерных взаимодействиях.
Такие ядерные процессы, как?-распад, удалось объяснить только с помощью квантового эффекта прохождения частиц сквозь потенциальный барьер (см. Туннельный эффект).

Была построена квантовая теория рассеяния (см. Рассеяние микрочастиц), приводящая к существенно другим результатам, чем классическая теория рассеяния. В частности, оказалось, что при столкновениях медленных нейтронов с ядрами поперечное сечение взаимодействия в сотни раз превышает поперечные размеры сталкивающихся частиц. Это имеет исключительно важное значение для ядерной энергетики.

На основе квантовой механики была построена зонная теория твёрдого тела.

Из квантовой теории вынужденного излучения, созданной Эйнштейном ещё в 1917, в 50-х гг. возник новый раздел радиофизики: были осуществлены генерация и усиление электромагнитных волн с помощью квантовых систем. Н. Г. Басов, А. М. Прохоров и независимо Ч. Таунс создали микроволновой квантовый генератор (мазер), в котором использовалось вынужденное излучение возбуждённых молекул. В 60-х гг. был создан лазер – квантовый генератор электромагнитных волн в видимом диапазоне длин волн (см. Квантовая электроника).

Квантовая статистика

Подобно тому, как на основе классических законов движения отдельных частиц была построена теория поведения большой их совокупности – классическая статистика, на основе квантовых законов движения частиц была построена квантовая статистика. Последняя описывает поведение макроскопических объектов в том случае, когда классическая механика неприменима для описания движения слагающих их частиц. В этом случае квантовые свойства микрообъектов отчётливо проявляются в свойствах макроскопических тел.

Математический аппарат квантовой статистики существенно отличается от аппарата классической статистики, т. к., как говорилось выше, некоторые физические величины в квантовой механике могут принимать дискретные значения. Но содержание самой статистической теории равновесных состояний не претерпело глубоких изменений. В квантовой статистике, как и вообще в квантовой теории систем многих частиц, важную роль играет принцип тождественности одинаковых частиц (см. Тождественности принцип). В классической статистике принимается, что перестановка двух одинаковых (тождественных) частиц меняет состояние. В квантовой статистике состояние системы не меняется при такой перестановке. Если частицы (или квазичастицы) имеют целый спин (они называются бозонами), то в одном и том же квантовом состоянии может находиться любое число частиц. Системы таких частиц описываются Бозе – Эйнштейна статистикой. Для любых частиц (квазичастиц) с полуцелым спином (фермионов) справедлив принцип Паули, и системы этих частиц описываются Ферми – Дирака статистикой.

Квантовая статистика позволила обосновать теорему Нернста (третье начало термодинамики) – стремление энтропии к нулю при абсолютной температуре Т? 0.

Квантовая статистическая теория равновесных процессов построена в столь же законченной форме, как и классическая. Заложены также основы квантовой статистической теории неравновесных процессов. Уравнение, описывающее неравновесные процессы в квантовой системе и называемое основным кинетическим уравнением, позволяет в принципе проследить за изменением во времени вероятности распределения по квантовым состояниям системы.

Квантовая теория поля (КТП)

Следующий этап в развитии квантовой теории – распространение квантовых принципов на системы с. бесконечным числом степеней свободы (поля физические) и описание процессов рождения и превращения частиц – привёл к КТП, наиболее полно отражающей фундаментальное свойство природы – корпускулярно-волновой дуализм.

В КТП частицы описываются с помощью квантованных полей, представляющих собой совокупность операторов рождения и поглощения частиц в различных квантовых состояниях. Взаимодействие квантованных полей приводит к различным процессам испускания, поглощения и превращения частиц. Любой процесс в КТП рассматривается как уничтожение одних частиц в определённых состояниях и появление других в новых состояниях.

Первоначально КТП была построена применительно к взаимодействию электронов, позитронов и фотонов (квантовая электродинамика). Взаимодействие между заряженными частицами, согласно квантовой электродинамике, осуществляется путём обмена фотонами, причём электрический заряд е частицы представляет константу, характеризующую связь поля заряженных частиц с электромагнитным полем (полем фотонов).

Идеи, положенные в основу квантовой электродинамики, были в 1934 использованы Э. Ферми для описания процессов бета-распада радиоактивных атомных ядер с помощью нового типа взаимодействия (который, как выяснилось впоследствии, представляет собой частный случай т. н. слабых взаимодействий). В процессах электронного бета-распада один из нейтронов ядра превращается в протон и одновременно происходит испускание электрона и электронного антинейтрино. Согласно КТП, такой процесс можно представить как результат контактного взаимодействия (взаимодействия в одной точке) квантованных полей, соответствующих четырём частицам со спином 1/2: протону, нейтрону, электрону и антинейтрино (т. е. четырёхфермионным взаимодействием).

Дальнейшим плодотворным применением идей КТП явилась гипотеза Х. Юкавы (1935) о существовании взаимодействия между полем нуклонов (протонов и нейтронов) и полем мезонов (в то время ещё не обнаруженных экспериментально). Ядерные силы между нуклонами, согласно этой гипотезе, возникают в результате обмена нуклонов мезонами, а короткодействующий характер ядерных сил объясняется наличием у мезонов сравнительно большой массы покоя. Мезоны с предсказанными свойствами (пи-мезоны) были обнаружены в 1947, а взаимодействие их с нуклонами оказалось частным проявлением сильных взаимодействий.

КТП является, т. о., основой для описания элементарных взаимодействий, существующих в природе: электромагнитных, сильных и слабых. Наряду с этим методы КТП нашли широкое применение и в теории твёрдого тела, плазмы, атомного ядра, поскольку многие процессы в этих средах связаны с испусканием и поглощением различного рода элементарных возбуждений – квазичастиц (фононов, спиновых волн и др.).

Из-за бесконечного числа степеней свободы у поля взаимодействие частиц – квантов поля – приводит к математическим трудностям, которые до сих пор не удалось полностью преодолеть. Однако в теории электромагнитных взаимодействий любую задачу можно решить приближённо, т.к. взаимодействие можно рассматривать как малое возмущение свободного состояния частиц (вследствие малости безразмерной константы? 1/137, характеризующей интенсивность электромагнитных взаимодействий). Теория всех эффектов в квантовой электродинамике находится в полном согласии с опытом. Тем не менее положение в этой теории нельзя считать благополучным, т.к. для некоторых физических величин (массы, электрического заряда) при вычислениях по теории возмущений получаются бесконечные выражения (расходимости). Их исключают, используя т.к. технику перенормировок, заключающуюся в том, что бесконечно большие величины для массы и заряда частицы заменяются их наблюдаемыми значениями. Большой вклад в разработку квантовой электродинамики внесли (в конце 40-х гг.) С. Томонага, Р. Фейнман, Ю. Швингер.

Разработанные в квантовой электродинамике методы в дальнейшем пытались применить для расчёта процессов слабого и сильного (ядерного) взаимодействий, однако здесь встретился ряд проблем.

Слабые взаимодействия присущи всем элементарным частицам, кроме фотона. Они проявляются в распадах большинства элементарных частиц и в некоторых других их превращениях. Константа слабых взаимодействий, определяющая интенсивность протекания вызванных ими процессов, растет с увеличением энергии частиц.

После экспериментально установленного факта несохранения пространственной чётности в процессах слабого взаимодействия (1956) была предложена т. н. универсальная теория слабых взаимодействий, близкая к фермиевской теории?-распада. Однако, в отличие от квантовой электродинамики, эта теория не позволяла вычислять поправки в высших порядках теории возмущений, т. е. теория оказалась неперенормируемой. В конце 60-х гг. сделаны попытки построения перенормируемой теории слабых взаимодействий. Успех был достигнут на основе т. н. калибровочных теорий. Была создана объединённая модель слабых и электромагнитных взаимодействий. В этой модели наряду с фотоном – переносчиком электромагнитных взаимодействий между заряженными частицами, должны существовать переносчики слабых взаимодействий – т. н. промежуточные векторные бозоны. Предполагается, что интенсивность взаимодействий промежуточных бозонов с др. частицами такая же, как и у фотонов. Т. к. радиус слабых взаимодействий очень мал (меньше 10-15 см), то, согласно законам квантовой теории, масса промежуточных бозонов должна быть очень велика: несколько десятков протонных масс. На опыте эти частицы пока не обнаружены. Должны существовать как заряженные (W- и W +), так и нейтральный (Z0) векторные бозоны. В 1973 экспериментально наблюдались процессы, которые, по-видимому, можно объяснить существованием нейтральных промежуточных бозонов. Однако справедливость новой единой теории электромагнитных и слабых взаимодействий нельзя считать доказанной.

Трудности создания теории сильных взаимодействий связаны с тем, что из-за большой константы связи методы теории возмущений оказываются здесь неприменимыми. Вследствие этого, а также в связи с наличием огромного экспериментального материала, нуждающегося в теоретическом обобщении, в теории сильных взаимодействий развиваются методы, основанные на общих принципах квантовой теории поля – релятивистской инвариантности, локальности взаимодействия (означающей выполнение условия причинности; см. Причинности принцип) и др. К ним относятся метод дисперсионных соотношений и аксиоматический метод (см. Квантовая теория поля). Аксиоматический подход является наиболее фундаментальным, но пока не обеспечивает достаточного количества конкретных результатов, допускающих экспериментальную проверку. Наибольшие практические успехи в теории сильных взаимодействий получены благодаря применению принципов симметрии.
Делаются попытки построить единую теорию слабых, электромагнитных и сильных взаимодействий (по типу калибровочных теорий).

Принципы симметрии и законы сохранения

Физические теории позволяют по начальному состоянию объекта определить его поведение в будущем. Принципы симметрии (или инвариантности) носят общий характер, им подчинены все физические теории. Симметрия законов Ф. относительно некоторого преобразования означает, что эти законы не меняются при проведении данного преобразования. Поэтому принципы симметрии можно установить на основании известных физ. законов. С др. стороны, если теория каких-либо физических явлений ещё не создана, открытые на опыте симметрии играют эвристическую роль при построении теории. Отсюда особая важность экспериментально установленных симметрий сильно взаимодействующих элементарных частиц – адронов, теория которых, как уже говорилось, не построена.

Существуют общие симметрии, справедливые для всех физических законов, для всех видов взаимодействий, и приближённые симметрии, справедливые лишь для определённого круга взаимодействий или даже одного вида взаимодействия. Т. о., наблюдается иерархия принципов симметрии. Симметрии делятся на пространственно-временные, или геометрические, и внутренние симметрии, описывающие специфические свойства элементарных частиц. С симметриями связаны законы сохранения. Для непрерывных преобразований эта связь была установлена в 1918 Э. Нетер на основе самых общих предположений о математическом аппарате теории (см. Нётер теорема, Сохранения законы).

Справедливыми для всех типов взаимодействий являются симметрии законов Ф. относительно следующих непрерывных пространственно-временных преобразований: сдвига и поворота физической системы как целого в пространстве, сдвига во времени (изменения начала отсчёта времени). Инвариантность (неизменность) всех физических законов относительно этих преобразований отражает соответственно однородность и изотропию пространства и однородность времени. С этими симметриями связаны (соответственно) законы сохранения импульса, момента количества движения и энергии. К общим симметриям относятся также инвариантность по отношению к преобразованиям Лоренца и калибровочным преобразованиям (1-го рода) – умножению волновой функции на т. н. фазовый множитель, не меняющий квадрата её модуля (последняя симметрия связана с законами сохранения электрического, барионного и лептонного зарядов), и некоторые другие.
Существуют также симметрии, отвечающие дискретным преобразованиям: изменению знака времени (см. Обращение времени), пространственной инверсии (т. н. зеркальная симметрия природы), зарядовому сопряжению. На основе приближённой SU (3)-симметрии (см. Сильные взаимодействия) М. Гелл-Ман (1962) создал систематику адронов, позволившую предсказать существование нескольких элементарных частиц, открытых позднее экспериментально.

Систематику адронов можно объяснить, если предположить, что все адроны «построены» из небольшого числа (в наиболее распространённом варианте – из трёх) фундаментальных частиц – кварков и соответствующих античастиц – антикварков. Существуют различные кварковые модели адронов, однако экспериментально обнаружить свободные кварки пока не удалось. В 1975–76 были открыты две новые сильно взаимодействующие частицы (?1 и?2) с массами, превышающими утроенную массу протона, и временами жизни 10-20 и 10-21 сек. Объяснение особенностей рождения и распада этих частиц, по-видимому, требует введения дополнительного, четвёртого, кварка, которому приписывается квантовое число «очарование». Помимо этого, по современным представлениям, каждый кварк существует в трёх разновидностях, отличающихся особой характеристикой – «цветом».

Успехи в классификации адронов на основе принципов симметрии очень велики, хотя причины возникновения этих симметрий до конца не ясны; возможно, они действительно обусловлены существованием и свойствами кварков.

Еще П.В.Копнин, определяя элементы логической структуры научного знания, ставил на первое место «входящие в ее систему” основания науки, под которыми понимал «прежде всего те ее теоретические положения, которые выражают общие закономерности предмета данной науки, рассматриваемые в какой-то мере с определенной стороны во всех ее теориях. Эти положения принимаются за основу при логическом построении каждой конкретнонаучной системы и связывают ее с материальной действительностью, причем либо непосредственно, либо через положения, входящие в систему не этой, а другой науки” (Копнищ, 1965).

Эти идеи получили свое дальнейшее развитие в целом ряде исследований философов. П.С.Дышлевый и В.М.Найдыш рассматривают основания науки прежде всего в свете развития научного знания. ”В качестве основания, - считают данные авторы, - выступает такой элемент, который выполняет в данной науке функцию организации развития знания, направляет, регулирует, контролирует и корректирует процесс получения нового знания”. Этим требованиям, по мнению авторов, отвечают ”две внутренне связанные логические структуры - система методологических установок познавательной деятельности и принципы фундаментальной теории” (Дышлевый, Найдыш, 1981, с. 138,140). Методологические установки познавательной деятельности выполняют регулятивные функции и с содержательной стороны являются системой «представлений об общих свойствах объекта познания, процесса исследования этого объекта и о том, каким (по форме) должен быть результат исследования” (там же, с. 135).

Принципы фундаментальной теории в основании науки вытекают из основной концептуальной конструкции, организующей в единое целое научные теории и знание каждой частной науки.

Фундаментальные принципы научной теории имеют свои определенные параметры, как и вся теория в целом, в которой определяющими являются основания научной теории. В каждой теории основания включают некоторое число утверждений об идеализированных объектах своей предметной области, выраженных в фундаментальных понятиях, а также общефилософские и специально-научные утверждения. Последние утверждения специально не доказываются в данной теории, а берутся как интуитивно ясные, истинность и обоснование их производится в других науках.

Теоретические конструкты теории должны обрисовать ее фундаментальные принципы и фундаментальные факты, входящие в теорию из эмпирического базиса или других наук.

Фундаментальные принципы в научной теории - свидетельство того, что найден конкретный способ отражения общего и всеобщего в совокупностях тех или иных фактов, а следовательно, и способ отражения этого общего в объективной действительности. Принципы рождаются на базе обобщения научных фактов, как результат творческого мышления, в котором происходит качественный скачок - от конечного числа фактов к их бесконечному числу и тем самым - к сущности, к закону.

В основания теории включаются и некоторые группы правил, позволяющих фиксировать факты, явления данной системы научного знания, а также правила способов оперирования и преобразования научных фактов в процессе исследования.

Для археологии в целом, ее наиболее общей теории, организующей ее знание в единое целое, в качестве идеализированных объектов выступают развитие социальной жизнедеятельности отдельных обществ прошлого, на базе чего и формируются ее фундаментальные понятия.
Принципы, лежащие в основе образования этих понятий, состоят в том, что материальные остатки жизнедеятельности обществ, находимые в различных археологических памятниках, отображают разнообразие самой прошлой исторической действительности, поэтому исследование этих остатков позволяет реконструировать историю прошлых обществ.
Фундаментальными фактами, кроме социологических понятий, выступают такие, как археологические памятники, археологическая культура, артефакты и т.п.

Далее, в археологии как науке исторического профиля фундаментальным является принцип историзма, рассматривающий любые факты на шкале времени. Среди основных правил теории, позволяющих фиксировать ее факты, отметим правило установления социальной функции любых археологических остатков, т.е. определение их качественной связи с прошлой исторической действительностью, а также правило оперирования фактами на основе типологии, исходными посылками построения которой служат сферы социальной деятельности. К этой же группе относятся правила хронологизации материальных остатков и др. Конечно, изложенный аспект фундаментальной археологической теории и ее принципов дан здесь в самом общем виде, определяющем археологию в целом как науку для всех ее периодов. Развивается и конкретизируется данная теория в прямой зависимости от философско-мировоззрёнческих установок, которых придерживается каждый ученый-археолог.

Основания науки - это тот фактор, который формирует научное знание как целостную систему определенной предметной области, отражающую наше знание какой-то части объективной реальности. Поэтому если научное знание рассматривать с позиций его объективного развития, то определяющим моментом должно быть развитие оснований науки, ибо только формирование качественно новой (или иной) концепции принципов фундаментальной теории в основании науки может привести к появлению (открытию) в научном исследовании качественно нового научного знания. Но поскольку это знание все же одной предметной области, в которой ”не только явления преходящи, подвижны, текучи, отделены. лишь условными гранями, то и сущности вещей также” (Ленин, т. 29, с. 227), то развитие знания об объекте и связано с переходом ”от менее глубокой к более глубокой сущности” (там же, с. 203), которые в конечном итоге и определяются основаниями науки. Переход от одного качественного этапа развития научного знания к другому и есть научная революция, в которой кульминацией является формирование основания качественно нового уровня системы научного знания.

Основная функция методологических принципов заключается в том, чтобы представить в наиболее обобщенном виде специфику исследовательской деятельности данной частно-научной системы, следовательно, показать науку в общем и специфическом, как систему положительного знания, опирающегося на определенный опыт исторического развития процесса познания.

Для того чтобы методологические принципы выполняли регулятивные функции, функции организации и направления научного знания, т.е. определяли познавательную деятельность ученого (Ивлев, 1982, с. 26), они должны содержать познавательные установки, касающиеся составных элементов исследования и результатов познания „(Дышлевый, Найдыш, 1981, с. 135).

Методологические установки познавательной деятельности формируются прежде всего как синтез накопленного наукой знания об объекте науки, поэтому на каждом этапе его развития оно выступает уже в представлениях ученых об общих свойствах, в которых отражается уровень его познания, т.е. наука исследует объект, нарушая не с абсолютного незнания его свойств, а опираясь на накопленные знания. Накопленные предшествующим развитием знания выступают в качестве исходного элемента получения нового знания. В археологии положение осложнялось тем, что она являлась одной из молодых наук XIX в. Можно привести много примеров того, как утверждалось научное знание в археологии, преодолевая неверные, часто курьёзные, представления. Сколько усилий стоило пионерам-археологам доказать, что кремневые наконечники - это не «громовые стрелы” или что прекрасная полихромная живопись Альтамиры создана палеолитическими охотниками! Сегодня мы уже не подвергаем никакому сомнению периодизацию трех веков в европейской археологии или связь палеолитических находок с ранними этапами формирования человека, хотя они отстоят от нашего времени на десятки и сотни тысяч лет! Нет надобности доказывать ныне необходимость стратиграфических и планиграфических наблюдений и фиксации остатков при раскопках поселений. Не вызывают и скептического отношения возможности реконструкции состава стада домашних животных по остаткам костей, собираемых на поселениях. Наконец, археология доказала возможности широких реконструкций разнообразных бытовых особенностей жизни древних людей, а также технологических процессов и т.д. Все это составляет опыт, выработанный археологией в накоплении знаний об историческом прошлом, и именно на основе этого опыта формируется современная система представлений о свойствах объекта познания, причем в соответствии со спецификой археологии как исторической науки речь идет фактически о двух системах - системе источников как остатков доступных непосредственному и чувственно-воспринимаемому исследованию (знание об археологических памятниках) и системе знания об истории древних обществ, которые познаются по этим источникам. Естественно, что с развитием науки возрастает и глубина познания как в области исследования источников, так и истории отдельных обществ прошлого.

Второй элемент системы методологических установок формирует представления о сфере непосредственной исследовательской деятельности, определяет постановку конкретно-научных задач и, главное, указывает конкретные методы их решения. И здесь в каждой частной науке вырабатываются свои специфические методы и свои закономерности развития исследования, вырастающие из знания объекта познания, в которых опыт исследовательской деятельности науки в целом и каждого исследователя в частности играют решающую роль. Приведем лишь один пример. В археологии все современное знание об археологических памятниках есть результат непрерывного совершенствования методов полевых исследований - от простого сбора вещей при перекапывании культурного слоя на памятниках до детальной фиксации всех конструктивных особенностей остатков сооружений и расположения в них вещей - вот тот путь, который прошла практика археологических раскопок за почти два века своего развития. Но аналогичная картина способов фиксации и интерпретации характерна и для всех других областей археологического знания. Весь современный арсенал исследовательских процедур, используемых в археологии, представляет собой совокупный опыт, накопленный наукой, и этим определяет дальнейшие возможности и пути совершенствования методов исследования.

Наконец, в научном исследовании главный элемент - это результат научно-исследовательского поиска. В качестве методологической установки этот принцип должен обрисовать, каким конкретно по форме должен быть результат, т.е. что именно, какое свойство в объекте познания должно быть познано и в какой конкретной форме должен быть изложен результат этого исследования. Причем здесь, пожалуй, главным является указание на то, какова глубина познания свойств и закономерностей развития объекта. Данная целевая установка играет чрезвычайно важную роль в развитии археологического знания. Ставится ли только задача раскопок и описания археологического памятника или необходимо также реконструировать по результатам раскопок изученные объекты, довести реконструкцию до уровня образа жизни, представив себе систему жизнедеятельности древних людей в ее обыденности, или описать остатки, собранные при раскопках как определенные культурные объекты, представить их в сравнении с другими. Или, наконец, будет поставлена задача выяснения закономерности социально-исторического развития населения, оставившего данные памятники в системе того общества, к которому оно принадлежало. Все это результаты различного подхода к постановке познавательных задач исследования, и тем самым - получение конкретных результатов.

Естественно, что в археологии, как и в других науках, а пожалуй, и гораздо больше, имеет значение то, выполняется ли оптимальные (по глубине раскрытия социально-исторической сущности) для данного периода исследования в единичных работах или в массе, что и будет определять предельный уровень развития научного знания в целом. Все это в конечном итоге и выступает в качестве «критерия научности” для каждого периода развития научного знания в археологии.

Методологические установки сами по себе, как любые методологические концепции, могут формулироваться лишь в свете определенных познавательных задач, выдвигаемых наукой в различные периоды своего развития. Естественно, что это должны быть задачи наиболее общего характера, которые бы объединяли и формировали всю данную научную систему, придавая ей специфический, качественно отличный облик в развитии познания своей предметной области. Такие задачи могут быть выдвинуты лишь на базе принципов фундаментальной теоретической концепции, охватывающей все многообразие непосредственных объектов исследования и все богатство конкретно-научного знания о них в единую систему как определённую целостность объективного мира. Подобная роль принципов фундаментальной теории вытекает из положения о примате теоретического знания в формировании научного знания в целом: осмысление эмпирического материала может быть осуществлено лишь на базе теоретического знания.

Проблема фундаментальной теории, как фактора, формирующего археологическое знание, до сих пор в археологии явно не ставилась - как в целом, так и в плане генезиса археологического знания. Не раскрывая пока эту проблему, поскольку ей будет посвящен обстоятельный анализ в дальнейшем, отметим лишь, что, по-видимому, наиболее общий принцип фундаментальной теории археологии состоит в соотнесении ее со знанием исторического типа. Принципы фундаментальной теории находят свое выражение в конечных результатах научного исследования. Поэтому чтобы обрисовать принципы, на которых базировалось познание, необходимо анализировать само научное знание данной науки. Причем в этом знании находят также свое отображение все методологические установки, которые формировались на базе данных принципов фундаментальной теории. Такой анализ в конечном итоге и позволяет выявить качественные этапы в развитии знания одной предметной области науки.

Но главное значение такого анализа, пожалуй, не только в том, что появляется возможность выделить определенные периоды развития научного знания. Эвристическая ценность его больше в том, что он позволяет проследить и четче обрисовать перспективу развития данной частно-научной системы, сформулировать конкретные задачи эффективного совершенствования познавательной деятельности в достижении основной цели - получении нового знания. Поэтому если ставится проблема исследования генезиса научного знания, следовательно, определения специфических особенностей его развития в различные периоды, то необходимо обратиться прежде всего к анализу оснований науки, ибо именно они и определяют как специфику частно-научного знания на каждом историческом этапе его развития, так и те революционные преобразования, которые происходят на рубеже этих этапов. Однако такой анализ и выделение периодов формирования качественно новых уровней специально-научного знания - отнюдь не стихийный процесс для каждой науки. Постановка его обусловлена общим ходом развития всей науки как единой специфической системы деятельности, в которой и вырабатываются на каждом историческом этапе особые представления о форме познания (предметоцентризм, системность, метасистемность), системность ступеней познания (строения, поведения, структуры), научной рефлексии (онтологизма, гносеологизма и методологизма) и т.д., о которых подробно речь шла в первом разделе данной работы. И вполне естественно, это общее состояние научной мысли каждой эпохи нашло свое отражение и в археологической науке, что мы попытаемся показать при периодизации развития археологии.

Можно также различать социологические теории по их преимущественной ориентации:фундаментальные иприкладные. Первые ориентированы на решение научных проблем, связаны с формированием социологического знания, концептуального аппарата социологии, методов социологического исследования. Они отвечают на два вопроса: «Что познается?» (объект) и «Как познается?» (метод), т. е. связаны с решением познавательных задач. Вторые ориентированы на решение актуальных социальных проблем, связаны с преобразованием изучаемого объекта и отвечают на вопрос: «Для чего познается?». Теории здесь различаются не по объекту или методу, а по той цели, которую ставит себе социолог, решает он познавательные задачи или практические.

Прикладные теории ориентированы на поиски средств для достижения намечаемых обществом практических целей, путей и способов использования познанных фундаментальными теориями законов и закономерностей. Прикладные теории непосредственно касаются определенных практических отраслей человеческой деятельности и прямо отвечают на вопрос: «Для чего?» (для социального развития, совершенствования социальных отношений и т. д.). Прикладной (практический) характер социологических теорий определяется тем вкладом, который они вносят в теории, прямо связанные с решением задач социального развития.

Признак «фундаментальности» не совпадает с признаком «теоретичности», и наоборот, хотя второй термин часто употребляется как синоним первого: теоретическая физика, теоретическая психология, теоретическая биология. Здесь «теоретический» означает не только теоретический уровень научного знания в отличие от эмпирического, но и его теоретическую, фундаментальную направленность в отличие от практической, прикладной.

Теоретическое знание в качестве фундаментального выступает в сопоставлении с прикладным, а не эмпирическим знанием и не исключает практической направленности. Такие характеристики, как «практический аспект», «прикладная функция», вполне приложимы к теоретическому уровню знания. Его антитезой является не прикладное знание, а эмпирическое.

Таким образом, деление теорий по ориентации на фундаментальные и прикладные достаточно условно, поскольку любая из них прямо или косвенно вносит определенный вклад в решение и научных, и практических задач. В строгом смысле следует говорить лишь о преимущественной ориентации той или иной теории: научной, фундаментальной либо практической, прикладной, что и дает основание для ее отнесения к определенной категории. То же относится и к эмпирическим социологическим исследованиям: они могут быть ориентированы на решение научных проблем, например на формирование специальной социологической теории, или практических, связанных, например, с совершенствованием социальной структуры общества. Фактически эти два аспекта социологического знания неразрывно связаны между собой и, будучи отнесенными к социологии в целом, в конечном счете образуют две из се функций: познавательную и практическую.

Итак, термины «фундаментальный» и «прикладной» обозначают аспект, направленность социологического знания в целом и не тождественны терминам «теоретический» и «эмпирический», обозначающим его уровни. В первом случае основанием деления является целевая установка, во втором - уровень абстракции.

Здесь следует отметить одно существенное обстоятельство. Деление социологических теорий на уровни и типы по различным основаниям (по объекту, уровню абстракции, социологической категории, подходу, методу, целевой установке и др.), т. е. построение их типологии, а в конечном счете их обоснованной иерархии, так или иначе отражает сложную структуру предмета социологии, способ его изображения, деления на «уровни», «стороны», «аспекты», «сферы». Говоря иначе, вопросы структуры предмета социологии и социологического знания тесно связаны между собой, а это, в свою очередь, означает, что адекватное изображение предмета социологии требует постоянного совершенствования методологических концепций, связанных с описанием структуры отображающего его знания.

Другие типы теорий

Различия междудинамическими истохастическими (от греч.stochasis- догадка)теориями состоят в характере тех законов и процессов, которые лежат в их основе. Динамические теории характеризуют поведение системы или объекта строго однозначно. В основе стохастических теорий лежат статистические законы. Эти теории описывают или объясняют поведение системы или объекта с определенной степенью вероятности. Стохастическое (или статистическое) объяснение раскрывает содержание системы (объекта) в виде определенных статистических зависимостей, которые выступают в качестве форм проявления закономерностей, детерминирующих поведение данной системы (объекта). Этот вид объяснения всегда включает в себя большую или меньшую степень вероятности. Это во-первых. И, во-вторых, стохастическое объяснение во многом зависит от теоретического анализа изучаемого объекта. Иначе статистическое объяснение будет оторвано от общих тенденций в развитии данного объекта, от того механизма, который описывается в статистических зависимостях.

Теории, описывающие изменения структуры изучаемого объекта, относятся к разрядутеории развития , а теории, описывающие факторы стабилизации его структуры, составляют класстеории функционирования.