Работает 555. Разнообразие простых схем на NE555. Генератор прямоугольных импульсов

555 - аналоговая интегральная микросхема, универсальный таймер - устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.

В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.

Схема включения в астабильном режиме. На рисунке ниже это показано.

Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.

Значения R1 и R2 подставляются в Омах, C - в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса - t1 и промежутком между импульсами - t2. t = t1+t2.

Частота и период - понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;

С теорией закончили так что приступим к практике.

Разработал простенькую схему с доступными всем деталями.

Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить). Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.

Вид сверху, видны переключатели рабочей частоты.

Снизу прикрепил памятку.

Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).

Сбоку выключатель питания и выход сигнала.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Программируемый таймер и осциллятор

NE555

1 В блокнот
Т1 Биполярный транзистор

КТ805А

1 В блокнот
D1 Выпрямительный диод

1N4148

1 В блокнот
С1 Конденсатор 1 нФ 1 В блокнот
С2 Конденсатор 100 нФ 1 В блокнот
С3 Конденсатор 1000 нФ 1 В блокнот
C4 Электролитический конденсатор 100 мкФ 1 В блокнот
R1 Резистор

500 Ом

1

Микросхема интегрального таймера 555 была разработана 44 года назад, в 1971 году и до сих пор популярна. Пожалуй, ещё ни одна микросхема так долго не служила людям. Чего только на ней не собирали, даже поговаривают, что номер 555 - это число вариантов её применения:) Одно из классических применений 555 таймера - регулируемый генератор прямоугольных импульсов.
В этом обзоре будет описание генератора, конкретное применение будет в следующий раз.

Плату прислали запечатанной в антистатический пакетик, но микросхема очень дубовая и статикой её так просто не убить.


Качество монтажа нормальное, флюс не отмыт




Схема генератора стандартная для получения скважности импульсов ≤2


Красный светодиод подключен на выход генератора и при малой выходной частоте - мигает.
По китайской традиции, производитель забыл поставить ограничивающий резистор последовательно с верхним подстроечником. По спецификации, он должен быть не менее 1кОм, чтобы не перегружать внутренний ключ микросхемы, однако, реально схема работает и при меньшем сопротивлении - вплоть до 200 Ом, при котором происходит срыв генерации. Добавить ограничивающий резистор на плату затруднительно из-за особенности разводки печатной платы.
Диапазон рабочих частот выбирается установленной перемычной в одной из четырёх позиций
Частоты продавец указал неверно.


Реально измеренные частоты генератора при питающем напряжении 12В
1 - от 0,5Гц до 50Гц
2 - от 35Гц до 3,5kГц
3 - от 650Гц до 65кГц
4 - от 50кГц до 600кГц

Нижний резистор (по схеме) задаёт длительность паузы импульса, верхний резистор задаёт период следования импульсов.
Напряжение питания 4,5-16В, максимальная нагрузка на выходе - 200мА

Стабильность выходных импульсов на 2 и 3 диапазонах невысока из-за применения конденсаторов из сегнетоэлектрической керамики типа Y5V - частота сильно уползает не только при изменении температуры, но даже при изменении питающего напряжения (причём в разы). Рисовать графики не стал, просто поверьте на слово.
На остальных диапазонах стабильность импульсов приемлемая.

Вот что он выдаёт на 1 диапазоне
На максимальном сопротивлении подстроечников


В режиме меандр (верхний 300 Ом, нижний на максимуме)


В режиме максимальной частоты (верхний 300 Ом, нижний на минимум)


В режиме минимальной скважности импульсов (верхний подстроечник на максимуме, нижний на минимуме)

Для китайских производителей: добавьте ограничивающий резистор 300-390 Ом, замените керамический конденсатор 6,8мкФ на электролитический 2,2мкФ/50В, и замените конденсатор 0,1мкФ Y5V на более качественный 47нФ X5R (X7R)
Вот готовая доработанная схема


Себе генератор не переделывал, т.к. указанные недостатки для моего применения не критичны.

Вывод: полезность устройства выясняется, когда какая-либо Ваша самоделка потребует подать на неё импульсы:)
Продолжение следует…

Планирую купить +31 Добавить в избранное Обзор понравился +28 +58

Потребовалось мне сделать регулятор скорости для пропеллера. Чтобы дым от паяльника сдувать, да морду лица вентилировать. Ну и, для прикола, уложить все в минимальную стоимость. Проще всего маломощный двигатель постоянного тока, конечно, регулировать переменным резистором, но найти резюк на такой малый номинал, да еще нужной мощности это надо сильно постараться, да и стоить он будет явно не десять рублей. Поэтому наш выбор ШИМ + MOSFET.

Ключ я взял IRF630 . Почему именно этот MOSFET ? Да просто у меня их откуда то завелось штук десять. Вот и применяю, так то можно поставить что либо менее габаритное и маломощное. Т.к. ток тут вряд ли будет больше ампера, а IRF630 способен протащить через себя под 9А. Зато можно будет сделать целый каскад из вентиляторов, подсоединив их к одной крутилке — мощи хватит:)

Теперь пришло время подумать о том, чем мы будем делать ШИМ . Сразу напрашивается мысль — микроконтроллером. Взять какой-нибудь Tiny12 и сделать на нем. Мысль я эту отбросил мгновенно.

  1. Тратить такую ценную и дорогую деталь на какой то вентилятор мне западло. Я для микроконтроллера поинтересней задачу найду
  2. Еще софт под это писать, вдвойне западло.
  3. Напряжение питания там 12 вольт, понижать его для питания МК до 5 вольт это вообще уже лениво
  4. IRF630 не откроется от 5 вольт, поэтому тут пришлось бы еще и транзистор ставить, чтобы он подавал высокий потенциал на затвор полевика. Нафиг нафиг.
Остается аналоговая схема. А что, тоже неплохо. Наладки не требует, мы же не высокоточный девайс делаем. Детали тоже минимальные. Надо только прикинуть на чем делать.

Операционные усилители можно отбросить сразу. Дело в том, что у ОУ общего назначения уже после 8-10кГц, как правило, предельное выходное напряжение начинает резко заваливаться, а нам надо полевик дрыгать. Да еще на сверхзвуковой частоте, чтобы не пищало.


ОУ лишенные такого недостатка стоят столько, что на эти деньги можно с десяток крутейших микроконтроллеров купить. В топку!

Остаются компараторы, они не обладают способностью операционника плавно менять выходное напряжение, могут только сравнивать две напруги и замыкать выходной транзистор по итогам сравнения, но зато делают это быстро и без завала характеристики. Пошарил по сусекам и компараторов не нашел. Засада! Точнее был LM339 , но он был в большом корпусе, а впаивать микросхему больше чем на 8 ног на такую простую задачу мне религия не позволяет. В лабаз тащиться тоже было влом. Что делать?

И тут я вспомнил про такую замечательную вещь как аналоговый таймер — NE555 . Представляет собой своеобразный генератор, где можно комбинацией резисторов и конденсатором задавать частоту, а также длительность импульса и паузы. Сколько на этом таймере разной хрени сделали, за его более чем тридцатилетнюю историю… До сих пор эта микросхема, несмотря на почтенный возраст, штампуется миллионными тиражами и есть практически в каждом лабазе по цене в считанные рубли. У нас, например, он стоит около 5 рублей. Порылся по сусекам и нашел пару штук. О! Щас и замутим.


Как это работает
Если не вникать глубоко в структуру таймера 555, то несложно. Грубо говоря, таймер следит за напряжением на конденсаторе С1, которое снимает с вывода THR (THRESHOLD — порог). Как только оно достигнет максимума (кондер заряжен), так открывается внутренний транзистор. Который замыкает вывод DIS (DISCHARGE — разряд) на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю (полный разряд) система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.
Заряд конденсатора С1 идет по пути: «R4->верхнее плечо R1 ->D2 «, а разряд по пути: D1 -> нижнее плечо R1 -> DIS . Когда мы крутим переменный резистор R1 то у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе.
Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1.
Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Диоды можно ставить любые совершенно, кондеры примерно такого номинала, отклонения в пределах одного порядка не влияют особо на качество работы. На 4.7нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно, видать слух у меня уже не идеальный:(

Покопался в закромах, которая сама расчитывает параметры работы таймера NE555 и собрал схему оттуда, для астабильного режима со коэффициентом заполнения меньше 50%, да вкрутил там вместо R1 и R2 переменный резистор, которым у меня менялась скважность выходного сигнала. Надо только обратить внимание на то, что выход DIS (DISCHARGE) через внутренний ключ таймера подключен на землю, поэтому нельзя было его сажать напрямую к потенциометру , т.к. при закручивании регулятора в крайнее положение этот вывод бы сажался на Vcc. А когда транзистор откроется, то будет натуральное КЗ и таймер с красивым пшиком испустит волшебный дым, на котором, как известно, работает вся электроника. Как только дым покидает микросхему — она перестает работать. Вот так то. Посему берем и добавляем еще один резистор на один килоом. Погоды в регулировании он не сделает, а от перегорания защитит.

Сказано — сделано. Вытравил плату, впаял компоненты:

Снизу все просто.
Вот и печатку прилагаю, в родимом Sprint Layout —

А это напряжение на движке. Видно небольшой переходный процесс. Надо кондерчик поставить в параллель на пол микрофарады и его сгладит.

Как видно, частота плывет — оно и понятно, у нас ведь частота работы зависит от резисторов и конденсатора, а раз они меняются, то и частота уплывает, но это не беда. Во всем диапазоне регулирования она ни разу не влазит в слышимый диапазон. А вся конструкция обошлась в 35 рублей, не считая корпуса. Так что — Profit!

При современном развитии электроники в Китае, купить, кажется, можно все, что душе угодно: начиная от домашних кинотеатров и компьютеров и заканчивая такими простейшими изделиями, как электрические розетки и вилки.

Где-то между ними находятся , мигающие елочные гирлянды, часы с термометрами, регуляторы мощности, терморегуляторы, фотореле и многое другое. Как говорил великий сатирик Аркадий Райкин в монологе про дефицит: «Пусть все будет, но пусть чего-то не хватает!» В общем, не хватает как раз того, что входит в «репертуар» простых радиолюбительских конструкций.

Несмотря на такую конкуренцию со стороны китайской промышленности, интерес самодеятельных конструкторов к этим простым конструкциям не потерян до сих пор. Они продолжают разрабатываться и в ряде случаев находят достойное применение в устройствах малой домашней автоматизации. Многие из этих устройств появились на свет благодаря (отечественный аналог КР1006ВИ1).

Это уже упомянутые фотореле, различные простые системы сигнализации, преобразователи напряжения, ШИМ - регуляторы двигателей постоянного тока и многое другое. Далее будут описаны несколько практических конструкций, доступных для повторения в домашних условиях.

Фотореле на таймере 555

Фотореле, показанное на рисунке 1, предназначено для управления освещением.

Рисунок 1.

Алгоритм управления традиционный: вечером при снижении освещенности лампочка включается. Выключение лампочки происходит утром, когда освещенность достигнет нормального уровня. Схема состоит из трех узлов: измеритель освещенности, узел включения нагрузки и блок питания. Описание работы схемы лучше начать задом - наперед, - блок питания, узел включения нагрузки и измеритель освещенности.

Блок питания

В подобных конструкциях, как раз тот самый случай, когда резонно применить, нарушая все рекомендации техники безопасности, блок питания, не имеющий гальванической развязки от сети. На вопрос, почему такое возможно, ответ будет таков: после настройки устройства никто в него не полезет, все будет находиться в изолирующем корпусе.

Наружных регулировок тоже не предвидится, после настройки останется только закрыть крышку и повесить готовое на место, пусть себе работает. Конечно, если есть необходимость, то единственную настройку «чувствительность», можно вывести наружу при помощи длинной пластмассовой трубки.

В процессе настройки безопасность можно обеспечить двумя путями. Либо воспользоваться развязывающим трансформатором () либо запитать устройство от лабораторного блока питания. При этом сетевое напряжение и лампочку можно не подключать, а срабатывание фотоэлемента контролировать по светодиоду LED1.

Схема блока питания достаточно проста. Она представляет мостовой выпрямитель Br1 с гасящим конденсатором C2 на переменное напряжение не менее 400В. Резистор R5 предназначен для сглаживания броска тока через конденсатор C14 (500,0мкФ * 50В) при включении устройства, а также «по совместительству» является предохранителем.

Стабилитрон D1 предназначен для стабилизации напряжения на C14. В качестве стабилитрона подойдет 1N4467 или 1N5022A. Для выпрямителя Br1 вполне подойдут диоды 1N4407 или любой маломощный мост, с обратным напряжением 400В и выпрямленным током не менее 500мА.

Конденсатор C2 следует зашунтировать резистором сопротивлением около 1МОм (на схеме не показан), чтобы после отключения устройства не «щелкало» током: убить, конечно, не убьет, но все же достаточно чувствительно и неприятно.

Узел включения нагрузки

Выполнен с применением специализированной микросхемы КР1182ПМ1А, которая позволяет сделать немало полезных устройств. В данном случае она используется для управления симистором КУ208Г. Лучшие результаты дает импортный «аналог» BT139 - 600: ток нагрузки 16А при обратном напряжении 600В, а ток управляющего электрода намного меньше, чем у КУ208Г (иногда КУ208Г приходится подбирать по этому показателю). BT139 способен выдерживать импульсные перегрузки до 240А, что делает его исключительно надежным при работе в различных устройствах.

Если BT139 установлен на радиаторе, то коммутируемая мощность может достигать 1КВт, без радиатора допустимо управление нагрузкой до 400Вт. В том случае, когда мощность лампочки не превышает 150Вт, можно вполне обойтись без симистора. Для этого правый по схеме вывод лампы La1 следует присоединить непосредственно в выводам 14, 15 микросхемы, а резистор R3 и симистор T1 из схемы исключить.

Поехали дальше. Микросхема КР1182ПМ1А управляется через выводы 5 и 6: когда они замкнуты лампа погашена. Тут может быть обычный контактный выключатель, правда, работающий наоборот, - выключатель замкнут, а лампа погашена. Так намного проще запомнить эту «логику».

Если этот контакт разомкнуть, то начинает заряжаться конденсатор C13 и, по мере возрастания напряжения на нем, плавно возрастает яркость свечения лампы. Для ламп накаливания это очень актуально, поскольку увеличивает срок их службы.

Подбором резистора R4 можно регулировать степень заряда конденсатора C13 и яркость свечения лампы. В случае использования энергосберегающих ламп конденсатор C13 можно не ставить, как собственно и саму КР1182ПМ1А. Но об этом будет сказано ниже.

Теперь приближаемся к главному. Вместо реле, просто из стремления избавиться от контактов, управление было поручено транзисторному оптрону АОТ128, который с успехом можно заменить импортным «аналогом» 4N35, правда, при такой замене номинал резистора R6 следует увеличить до 800КОм…1МОм, поскольку при 100КОм импортный 4N35 работать не будет. Проверено практикой!

Если транзистор оптрона будет открыт, его переход К-Э, подобно контакту, замкнет выводы 5 и 6 микросхемы КР1182ПМ1А и лампа будет выключена. Чтобы открыть этот транзистор требуется засветить светодиод оптрона. В общем, получается все наоборот: светодиод погашен, а лампа светит.

На основе 555 получается очень просто. Для этого достаточно на входы таймера подключить соединенные последовательно фоторезистор LDR1 и подстроечный резистор R7, с его помощью настраивается порог срабатывания фотореле. Гистерезис переключения (темно - светло) обеспечивается самим таймером, его . Помните, эти «волшебные» цифры 1/3U и 2/3U?

Если фотодатчик находится в темноте, его сопротивление велико, поэтому напряжение на резисторе R7 низкое, что приводит к тому, что на выходе таймера (вывод 3) устанавливается высокий уровень и светодиод оптрона погашен, а транзистор закрыт. Следовательно, лампочка будет включена, как было написано ранее в подзаголовке «Узел включения нагрузки».

В случае освещения фотодатчика его сопротивление становится маленьким, порядка нескольких КОм, поэтому напряжение на резисторе R7 возрастает до 2/3U, и на выходе таймера появляется низкий уровень напряжения, - светодиод оптрона засветился, а лампа-нагрузка погасла.

Вот тут кто-то может скажет: «Сложновато будет!». Но почти всегда все можно упростить до предела. Если предполагается зажигать энергосберегающие лампы, то плавное включение не требуется, и можно использовать обычное реле. А кто сказал, что только лампы и только включать?

Если реле имеет несколько контактов, то можно делать что душе угодно, и не только включать, но и выключать. Такая схема показана на рисунке 2 и в особых комментариях не нуждается. Реле подбирается из условий, чтобы ток катушки был не более 200мА при рабочем напряжении 12В.

Рисунок 2.

Схемы предварительной установки

В некоторых случаях требуется что-либо включать с некоторой задержкой относительно включения питания устройства. Например, сначала подать напряжение на логические микросхемы, и через некоторое время питание выходных каскадов.

Такие задержки реализуются на таймере 555 достаточно просто. Схемы таких задержек и временные диаграммы работы показаны на рисунках 3 и 4. Пунктирной линией показаны напряжения источника питания, а сплошной на выходе микросхемы.

Рисунок 3. После включения питания на выходе с задержкой появляется высокий уровень.

Рисунок 4. После включения питания на выходе с задержкой появляется низкий уровень.

Чаще всего такие «установщики» используются как составные части более сложных схем.

Устройства сигнализации на таймере 555

Схема сигнализатора представляет собой , с которым мы уже давно познакомились.

Рисунок 5.

В емкость с водой, например, бассейн погружены два электрода. Пока они находятся в воде, сопротивление между ними невелико (вода хороший проводник), поэтому конденсатор C1 зашунтирован, напряжение на нем близко к нулю. Также нулевое напряжение на входе таймера (выводы 2 и 6), следовательно на выходе (вывод 3) установится высокий уровень, генератор не работает.

Если уровень воды почему-то упадет и электроды окажутся в воздухе, сопротивление между ними увеличится, в идеале просто обрыв, и конденсатор C1 шунтироваться не будет. Поэтому наш мультивибратор заработает, - на выходе появятся импульсы.

Частота этих импульсов зависит от нашей фантазии и от параметров RC цепи: это будет либо мигающая лампочка, либо противный писк динамика. Попутно с этим можно включить долив воды. Чтобы избежать перелива и вовремя отключить насос к устройству необходимо добавить еще один электрод и подобную же схему. Тут уже читателю можно поэкспериментировать.

Рисунке 6.

При нажатии на концевой выключатель S2 на выходе таймера появляется напряжение высокого уровня, и останется таковым даже если S2 отпустить и больше не удерживать. Из этого состояния устройство можно вывести только нажатием на кнопку «Сброс».

Пока на этом остановимся, может кому потребуется время, чтобы взять паяльник и попробовать спаять рассмотренные устройства, исследовать, как они работают, хотя бы поэкспериментировать с параметрами RC цепей. Послушать, как пищит динамик или мигает светодиод, сравнить, что дают расчеты, намного ли практические результаты отличаются от расчетных.

20 мая 2011 в 16:57

Микросхема 555

  • DIY или Сделай сам

Всем привет. Сегодня я хочу рассказать вам о микросхеме 555. Её история началась ещё в далеком 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine). В те времена это была единственная «таймерная» микросхема, которая была доступна массовому потребителю. Сразу после выхода 555 завоевала бешеную популярность и её начали выпускать почти все производители полупроводников. Отечественные производители тоже выпускали данную микросхему под названием КР1006ВИ1 .

Что это за чудо?

Микросхема выпускается в двух вариантах корпуса - пластиковом DIP и круглом металлическом. Правда встретить 555 в круглом металлическом корпусе в наши времена очень сложно, чего не скажешь о версии в пластиковом DIP корпусе. Внутри корпуса с восемью выводами скрываются транзисторы, диоды и резисторы. Не будем вдаваться в доскональное изучение 555, но про ножки этой микросхемы я расскажу более подробно. Всего ножек 8.

1. Земля . Вывод, который во всех схемах нужно подключать к минусу питания.
2. Триггер , он же запуск. Если напряжение на пуске падает ниже 1/3 Vпит, то таймер запускается. Ток, потребляемый входом, не превышает 500нА.
3. Выход . Напряжение выхода примерно на 1,7 В ниже напряжения питания, когда он включен. Максимальная нагрузка, которую может выдержать выход - 200 мА.
4. Сброс . Если подать на него низкий уровень напряжения (меньше 0,7 В), то схема переходит в исходное состояние не зависимо от того, в каком режиме находится таймер на данный момент. Если в схеме не нужен сброс, то рекомендуется подключить этот вывод к плюсу питания.
5. Контроль . Этот вывод позволит нам получить доступ к опорному напряжению компаратора №1. Используется этот вывод очень редко, а вися в воздухе может сбивать работу, поэтому в схеме его лучше всего присоединить к земле.
6. Порог , он же стоп. Если напряжение на этом выходе выше 2/3 Vcc, то таймер останавливается и выход переводится в состояние покоя. Стоит заметить, что работает выход только тогда, когда вход выключен.
7. Разряд . Этот выход соединяется с землей внутри самой микросхемы, когда на выходе микросхемы низкий уровень и закрыт, когда на выходе высокий уровень. Может пропускать до 200 мА и иногда используется как дополнительный выход.
8. Питание . Данный выход нужно подключать к плюсу питания. Микросхема поддерживает напряжение в пределах 4,5-16 В. Может работать от обычной 9В-батарейки или от проводка USB.

Режимы

Ну что же пришло время поведать вам о режимах микросхемы 555. Их всего 3 и о каждом я расскажу более подробно.
Моностабильный

При подаче сигнала на вход нашей микросхемы, она включается, генерирует выходной импульс заданной длины и выключается, ожидая входного импульса. Важно, что после включения микросхема не будет реагировать на новые сигналы. Длину импульса можно рассчитать по формуле t=1.1*R*C. Пределов по длительности импульсов нет - как по минимальной, так и по максимальной длительности. Есть некоторые практические ограничения, которые можно обойти, но стоит задуматься над тем, нужно ли это и не проще ли выбрать другое решение. Итак, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С - 95пФ. Можно и меньше, но при этом схема начнет поглощать много электричества.

Нестабильный мультивибратор

В этом режиме все довольно таки просто. Управлять таймером не нужно. Он все сделает сам - сперва включится, подождет время t1, потом выключится, подождет время t2 и начнет все заново. На выходе у нас получится забор из высоких и низких состояний. Частота с которой будет колебаться зависит от параметров величин R1,R2 и C и определяется она по формуле F= 1,44/((R1+R2)C). В течение времени t1 = 0.693(R1+R2)C на выходе будет высокий уровень, а в течение времени 2 = 0.693R2C - низкий.

Бистабильный
В данном режиме наша микросхема 555 используется как выключатель. Нажал одну кнопку - выход включился, нажал другую - выключился.

Конец

Думаю Вам уже надоел теоретический материал и Вы хотите приступить к практике. Саму микросхему и детали к ней Вы можете купить в любой радиолавке. Ну, а если Вам вдруг лень идти в магазин Вы можете заказать все детали на этом