Курс лекций. Генетика. Что такое генетика? Генетика и все что с ней связано

Генетика (от греч. "генезис" - происхождение) - наука о закономерностях наследственности и изменчивости организмов.
Ген (от греч. "генос"-рождение)-участок молекулы ДНК, отвечающий за один признак, т. е. за структуру определенной молекулы белка.
Альтернативные признаки - взаимоисключающие, контрастные признаки (окраска семян гороха желтая и зеленая).
Гомологичные хромосомы (от греч. "гомос" - одинаковый) - парные хромосомы, одинаковые по форме, размерам, набору генов. В диплоидной клетке набор хромосом всегда парный:
одна хромосома из пары материнского происхождения, другая - отцовского.
Локус - участок хромосомы, в котором расположен ген.
Аллельные гены - гены, расположенные в одних и тех же локусах гомологичных хромосом. Контролируют развитие альтернативных признаков (доминантных и рецессивных - желтая и зеленая окраска семян гороха).
Генотип - совокупность наследственных признаков организма, полученных от родителей,- наследственная программа развития.
Фенотип - совокупность признаков и свойств организма, проявляющаяся при взаимодействии генотипа со средой обитания.
Зигота (от греч. "зиготе" - спаренная) - клетка, образующаяся при слиянии двух гамет (половых клеток) - женской (яйцеклетки) и мужской (сперматозоида). Содержит диплоидный (двойной) набор хромосом.
Гомозигота (от греч. "гомос" - одинаковый и зигота) зигота, имеющая одинаковые аллели данного гена (оба доминантные АА или оба рецессивные аа). Гомозиготная особь в потомстве не дает расщепления.
Гетерозигота (от греч. "гетерос" - другой и зигота) - зигота, имеющая два разных аллеля по данному гену (Аа, Вb). Гетерозиготная особь в потомстве дает расщепление по данному признаку.
Доминантный признак (от лат. "едоминас" - господствующий) - преобладающий признак, проявляющийся в потомстве у
гетерозиготных особей.
Рецессивный признак (от лат. "рецессус" - отступление) признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков, полученных при скрещивании.
Гамета (от греч. "гаметес" - супруг) - половая клетка растительного или животного организма, несущая один ген из аллельной пары. Гаметы всегда несут гены в "чистом" виде, так как образуются путем мейотического деления клеток и содержат одну из пары гомологичных хромосом.
Цитоплазматическая наследственность - внеядерная наследственность, которая осуществляется с помощью молекул ДНК, расположенных в пластидах и митохондриях.
Модификация (от лат. "модификацио"-видоизменение)- ненаследственное изменение фенотипа, возникающее под влиянием факторов внешней среды в пределах нормы реакции генотипа.
Модификационная изменчивость - изменчивость фенотипа. Реакция конкретного генотипа на разные условия среды обитания.
Вариационный ряд - ряд модификационной изменчивости признака, слагающийся из отдельных значений видоизменений, расположенных в порядке увеличения или уменьшения количественного выражения признака (размеры листьев, число цветков в колосе, изменение окраски шерсти).
Вариационная кривая - графическое выражение изменчивости признака, отражающее как размах вариации, так и частоту встречаемости отдельных вариант.
Норма реакции - предел модификационной изменчивости признака, обусловленный генотипом. Пластичные признаки обладают широкой нормой реакции, непластичные- узкой.
Мутация (от лат. "мутацио" - изменение, перемена) - наследственное изменение генотипа. Мутации бывают: генные, хромосомные, генеративные (у гамет), внеядерные (цитоплазматиче-ские) и т. д.
Мутагенный фактор - фактор, вызывающий мутацию. Существуют естественные (природные) и искусственные (вызванные человеком) мутагенные факторы.
Моногибридное скрещивание- скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.
Дигибридное скрещивание-скрещивание форм, отличающихся друг от друга по двум парам альтернативных признаков.
Анализирующее скрещивание- скрещивание испытуемого организма с другим, являющимся по данному признаку рецессивной гомозиготой, что позволяет установить генотип испытуемого. Применяется в селекции растений и животных.
Сцепленное наследование - совместное наследование генов, локализованных в одной хромосоме; гены образуют группы сцепления.
Кроссинговср (перекрест) - взаимный обмен гомологичными участками гомологичных хромосом при их конъюгации (в профазе I мейоза I), приводящий к перегруппировке исходных комбинаций генов.
Пол организмов - совокупность морфологических и физиологических особенностей, которые определяются в момент оплодотворения сперматозоидом яйцеклетки и зависят от половых хромосом, которые несет сперматозоид.
Половые хромосомы - хромосомы, по которым мужской пол отличается от женского. Половые хромосомы женского организма все одинаковы (XX) и определяют женский пол. Половые хромосомы мужсквго организма разные(XY): X определяет женский
пол, Y- мужской пол. Поскольку все сперматозоиды образуются путем мейотического деления клеток, половина их несет Х-хро-мосомы, а половина - У-хромосомы. Вероятность получения мужского и женского пола одинакова,
Генетика популяций - раздел генетики, изучающий генотипический состав популяций. Это позволяет рассчитывать частоту мутантных генов, вероятность встречаемости их в гомо- и гетерозиготном состоянии, а также следить за накоплением в популяциях вредных и полезных мутаций. Мутации служат материалом для естественного и искусственного отбора. Данный раздел генетики был основан С. С. Четвериковым и получил дальнейшее развитие в трудах Н. П. Дубинина.

1. Генетика как наука, ее предмет, задачи и методы. Основные этапы развития .

Генетика - дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами.

Предмет генетики – наследственность и изменчивость организмов.

Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования:

1) механизмов хранения и передачи генетической информации от родительских форм к дочерним;

2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды;

3) типов, причин и механизмов изменчивости всех живых существ;

4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

Генетика является также основой для решения ряда важнейших практических задач. К ним относятся:

1) выбор наиболее эффективных типов гибридизации и способов отбора;

2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов;

3) искусственное получение наследственно измененных форм живых организмов;

4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных;

5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек.

Методы генетики:


Основные этапы развития генетики.

До начала ХХ в. попытки ученых объяснить явления, связанные с наследственностью и изменчивостью, имели в основном умозрительный характер. Постепенно было накоплено множество сведений относительно передачи различных признаков от родителей потомкам. Однако четких представлений о закономерностях наследования у биологов того времени не было. Исключением стали работы австрийского естествоиспытателя Г. Менделя.

Г. Мендель в своих опытах с различными сортами гороха установил важнейшие закономерности наследования признаков, которые легли в основу современной генетики. Результаты своих исследований Г. Мендель изложил в статье, опубликованной в 1865 г. в «Трудах Общества естествоиспытателей» в г. Брно. Однако опыты Г. Менделя опережали уровень исследований того времени, поэтому данная статья не привлекла внимания современников и оставалась невостребованной в течение 35 лет, вплоть до 1900 г. В этом году три ботаника – Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии, независимо проводившие опыты по гибридизации растений, натолкнулись на забытую статью Г. Менделя и обнаружили сходство результатов своих исследований с результатами, полученными Г. Менделем. 1900 год считается годом рождения генетики.

Первый этап развития генетики (с 1900 примерно до 1912 г.) характеризуется утверждением законов наследственности в гибридологических опытах, проведенных на разных видах растений и животных. В 1906 г. английский ученый В. Ватсон предложил важные генетические термины «ген», «генетика». В 1909 г. датский генетик В. Иоганнсен ввел в науку понятия «генотип», «фенотип».

Второй этап развития генетики (приблизительно с 1912 до 1925 г.) связан с созданием и утверждением хромосомной теории наследственности, в создании которой ведущая роль принадлежит американскому ученому Т. Моргану и его ученикам.

Третий этап развития генетики (1925 – 1940) связан с искусственным получением мутаций – наследуемых изменений генов или хромосом. В 1925 г. русские ученые Г. А. Надсон и Г. С. Филиппов впервые открыли, что проникающее излучение вызывает мутации генов и хромосом. В это же время были заложены генетико-математические методы изучения процессов, происходящих в популяциях. Фундаментальный вклад в генетику популяций внес С. С. Четвериков.

Для современного этапа развития генетики, начавшегося с середины 50-х годов XX в., характерны исследования генетических явлений на молекулярном уровне. Этот этап ознаменован выдающимися открытиями: созданием модели ДНК, определением сущности гена, расшифровкой генетического кода. В 1969 г. химическим путем вне организма был синтезирован первый относительно небольшой и простой ген. Спустя некоторое время ученым удалось осуществить введение в клетку нужного гена и тем самым изменить в желаемую сторону ее наследственность.

2. Основные понятия генетики

Наследственность - это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития.

Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма.

Изменчивость - способность организмов в процессе онтогенеза приобретать новые признаки и терять старые.

Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются и друг от друга, и от своих родителей.

Ген – это участок молекулы ДНК, отвечающий за определенный признак.

Генотип - это совокупность всех генов организма, являющихся его наследственной основой.

Фенотип - совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.

Аллельные гены - различные формы того же гена, занимающие одно и то же место (локус) гомологичных хромосом и определяющие альтернативные состояния одного и того же признака.

Доминантность - форма взаимоотношений междуаллелямиодногогена, при которой один из них подавляет проявление другого.

Рецессивность – отсутствие (непроявление) у гетерозиготного организма одного из пары противоположных (альтернативных) признаков.

Гомозиготность – состояние диплоидного организма, при котором в гомологичных хромосомах находятся идентичные аллели генов.

Гетерозиготность – состояние диплоидного организма, при котором в гомологичных хромосомах находятся разные аллели генов.

Гемизиготность - состояние гена, при котором в гомологичной хромосоме полностью отсутствует его аллель.

3. Основные типы наследования признаков.

    Моногенное (такой тип наследования, когда наследственный признак контролируется одним геном)

    1. Аутосомное

      1. Доминантное (прослеживается в каждом поколении; у больных родителей больной ребенок; болеют и мужчины и женщины; вероятность наследования – 50-100%)

        Рецессивное (не в каждом поколении; проявляется в потомстве у здоровых родителей; встречается и у мужчин и у женщин; вероятность наследования – 25-50-100%)

    2. Геносомное

      1. Х-сцепленное доминантное (сходен с аутосомным доминантным, но мужчины передают признак только дочерям)

        Х-сцепленное рецессивное (не в каждом поколении; болеют преимущественно мужчины; у здоровых родителей с вероятностью 25% - больные сыновья; больные девочки, если отец болен, а мать носительница)

        Y-сцепленное (голандрическое) (в каждом поколении; болеют мужчины; у больного отца все сыновья больные; вероятность наследования – 100% у всех мужчин)

    Полигенное

4. Моногибридное скрещивание. Первый и второй законы Менделя, их цитологические основы.

Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Первый закон Менделя (Закон единообразия гибридов первого поколения):

«При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу»

Второй закон Менделя (Закон расщепления признаков):

«При скрещивании гибридов первого поколения, анализируемых по одной паре альтернативных признаков, наблюдается расщепление по фенотипу 3:1, по генотипу 1:2:1»

В опытах Менделя первое поколение гибридов получено от скрещивания чистолинейных (гомозиготных) родительских растений гороха с альтернативными признаками (АА х аа). Они образуют гаплоидные гаметы А и а. Следовательно, после оплодотворения гибридное растение первого поколения будет гетерозиготным (Аа) с проявлением только доминантного (желтая окраска семени) признака, т. е. будет единообразным, одинаковым по фенотипу.

Второе поколение гибридов получено при скрещивании между собой гибридных растений первого поколения (Аа), каждое из которых образует по два типа гамет: А и а. Равновероятное сочетание гамет при оплодотворении особей первого поколения дает расщепление у гибридов второго поколения в соотношении: по фенотипу 3 части растений с доминантным признаком (желтозерные) к 1 части растений с рецессивным признаком (зеленозерным), по генотипу - 1 АА: 2 Аа: 1 аа.

ГЕНЕТИКА
наука, изучающая наследственность и изменчивость - свойства, присущие всем живым организмам. Бесконечное разнообразие видов растений, животных и микроорганизмов поддерживается тем, что каждый вид сохраняет в ряду поколений характерные для него черты: на холодном Севере и в жарких странах корова всегда рождает теленка, курица выводит цыплят, а пшеница воспроизводит пшеницу. При этом живые существа индивидуальны: все люди разные, все кошки чем-то отличаются друг от друга, и даже колоски пшеницы, если присмотреться к ним повнимательнее, имеют свои особенности. Два эти важнейшие свойства живых существ - быть похожими на своих родителей и отличаться от них - и составляют суть понятий "наследственность" и "изменчивость". Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей. Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 20 в. породило повышенный интерес к анализу феномена наследственности. В то время считали, что материальный субстрат наследственности - это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости. Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения "полукровка", "чистокровный" и др. сохранились до наших дней. Неудивительно, что современники не обратили внимания на результаты работы настоятеля монастыря в Брно Грегора Менделя по скрещиванию гороха. Никто из тех, кто слушал доклад Менделя на заседании Общества естествоиспытателей и врачей в 1865, не сумел разгадать в каких-то "странных" количественных соотношениях, обнаруженных Менделем при анализе гибридов гороха, фундаментальные биологические законы, а в человеке, открывшем их, основателя новой науки - генетики. После 35 лет забвения работа Менделя была оценена по достоинству: его законы были переоткрыты в 1900, а его имя вошло в историю науки. Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами. Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Все клетки организма, кроме половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если два аллеля идентичны, организм называют гомозиготным по этому гену. Если аллели разные, организм называют гетерозиготным. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина - другой. Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм. Гены - это определенные фрагменты ДНК; они организованы в хромосомы, находящиеся в ядре клетки. Каждый вид растений или животных имеет определенное число хромосом. У диплоидных организмов число хромосом парное, две хромосомы каждой пары называются гомологичными. Скажем, человек имеет 23 пары хромосом, при этом один гомолог каждой хромосомы получен от матери, а другой - от отца. Имеются и внеядерные гены (в митохондриях, а у растений - еще и в хлоропластах). Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз - это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. В результате митоза каждая хромосома родительской клетки удваивается и идентичные копии расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в онтогенезе, т.е. процессе индивидуального развития. Мейоз - это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток). В отличие от митоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине - другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух гаплоидных гамет (оплодотворении) вновь восстанавливается число хромосом - образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом.
Методические подходы. Благодаря каким особенностям методического подхода Мендель сумел сделать свои открытия? Для своих опытов по скрещиванию он выбрал линии гороха, отличающиеся по одному альтернативному признаку (семена гладкие или морщинистые, семядоли желтые или зеленые, форма боба выпуклая или с перетяжками и др.). Потомство от каждого скрещивания он анализировал количественно, т.е. подсчитывал число растений с этими признаками, что до него никто не делал. Благодаря этому подходу (выбору качественно различающихся признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что признаки родителей не смешиваются у потомков, а передаются из поколения в поколение неизменными. Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков - гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила - Drosophila melanogaster. На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген - сложная структура и имеется много форм (аллелей) одного и того же гена. Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации - включение ДНК, принадлежащей клетке донора, в клетку реципиента - и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др.
См. КЛЕТКА ;
НАСЛЕДСТВЕННОСТЬ ;
МОЛЕКУЛЯРНАЯ БИОЛОГИЯ .
Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов - от вирусов до человека.
Достижения и проблемы современной генетики. На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина
(см. ГЕННАЯ ИНЖЕНЕРИЯ).
Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим. Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930-1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию "химер" - трансгенных растений и животных, "копированию" животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической "паспортизации" людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ. Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы
(см. ПОПУЛЯЦИОННАЯ ГЕНЕТИКА),
изучать наследственные болезни
(см. ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ),
проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.
ЛИТЕРАТУРА
Айала Ф., Кайгер Дж. Современная генетика, тт. 1-3. М., 1988 Сингер М., Берг П. Гены и геномы, тт. 1-2. М., 1998

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ГЕНЕТИКА" в других словарях:

    ГЕНЕТИКА - (от греч. genesis происхождение), обычно определяется как физиология изменчивости и наследственности. Именно так определил содержание генетики Бетсон (Bateson), предложивший в 1906 г. этот термин, желая подчеркнуть, что из трех основных элементов … Большая медицинская энциклопедия

    - (от греч. genesis происхождение), наука о наследственности и изменчивости живых организмов и методах управления ими. В её основу легли закономерности наследственности, обнаруженные Г. Менделем при скрещивании разл. сортов гороха (1865), а также… … Биологический энциклопедический словарь

    - [гр. genetikos относящийся к рождению, происхождению] биол. раздел биологии, изучающий законы наследственности и изменчивости организмов. Словарь иностранных слов. Комлев Н.Г., 2006. генетика (гр. genetikos относящийся к рождению, происхождению)… … Словарь иностранных слов русского языка

    Продажная девка империализма Словарь русских синонимов. генетика сущ., кол во синонимов: 11 биология (73) … Словарь синонимов

    - (греч. genetikos – относящийся к происхождению) наука о законах наследственности и изменчивости организмов. Генетика занимает одно из центральных мест в комплексе биологических дисциплин; ее объектом является генотип, выполняющий функцию… … Энциклопедия культурологии

    генетика - раздел биологии, изучающий законы наследования признаков. Генетику не следует путать с психологией генетической, изучающей развитие поведения от момента рождения до смерти. Словарь практического психолога. М.: АСТ, Харвест. С. Ю. Головин. 1998.… … Большая психологическая энциклопедия

    - (от греческого genesis происхождение), наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от объекта исследования различают генетику микроорганизмов, растений, животных и человека, а от уровня… … Современная энциклопедия

    - (от греч. genesis происхождение) наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от объекта исследования различают генетику микроорганизмов, растений, животных и человека, а от уровня… … Большой Энциклопедический словарь

    ГЕНЕТИКА, наука, изучающая НАСЛЕДСТВЕННОСТЬ. К предмету генетики относятся: зависимости характерных признаков отдельного организма от его ГЕНОВ, основы их передачи потомству, причины изменения признаков вследствие МУТАЦИИ. Поведение человека,… … Научно-технический энциклопедический словарь

    ГЕНЕТИКА, генетики, жен. (от греч. genea рождение, род) (биол.). Отрасль биологии, изучающая условия зарождения организмов, их изменчивости и передачи наследственных свойств. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Генетика - это наука, изучающая закономерности передачи признаков от родительских особей к потомкам. Эта дисциплина также рассматривает их свойства и способность к изменчивости. При этом в качестве носителей информации выступают особые структуры - гены. В настоящее время наука накопила достаточно информации. Она имеет несколько разделов, каждый из которых обладает своими задачами и объектами исследований. Наиболее важные из разделов: классическая, молекулярная, и

Классическая генетика

Классическая генетика - это наука о наследственности. Это свойство всех организмов передавать во время размножения свои внешние и внутренние признаки потомству. Классическая генетика также занимается изучением изменчивости. Она выражается в нестабильности признаков. Эти изменения накапливаются из поколения в поколение. Только благодаря такому непостоянству организмы могут приспособиться к изменениям в окружающей их среде.

Наследственная информация организмов заключена в генах. В настоящее время их рассматривают с точки зрения молекулярной генетики. Хотя возникли эти понятия еще задолго до появления этого раздела.

Термины «мутация», «ДНК», «хромосомы», «изменчивость» стали известными в процессе многочисленных исследований. Сейчас результаты многовековых опытов кажутся очевидными, но когда-то все начиналось со случайных скрещиваний. Люди стремились получить коров с большими удоями молока, более крупных свиней и овец с густой шерстью. Это были первые, даже не научные, опыты. Однако именно эти предпосылки привели к возникновению такой науки, как классическая генетика. Вплоть до 20-го века скрещивание было единственным известным и доступным методом исследования. Именно результаты классической генетики стали значительным достижением современной науки биологии.

Молекулярная генетика

Это раздел, изучающий все закономерности, которые подчинены процессам на молекулярном уровне. Самое важное свойство всех живых организмов - это наследственность, то есть они способны из поколения в поколение сохранять основные черты строения своего организма, а также схемы протекания обменных процессов и ответов на воздействие различных факторов окружающей среды. Это происходит благодаря тому, что на молекулярном уровне особые вещества записывают и сохраняют всю полученную информацию, а затем передают ее следующим поколениям во время процесса оплодотворения. Открытие этих веществ и последующее их изучение стало возможным благодаря исследованию строения клетки на химическом уровне. Так были открыты нуклеиновые кислоты - основа генетического материала.

Открытие «наследственных молекул»

Современная генетика знает практически все о нуклеиновых кислотах, но, конечно же, так было не всегда. Первое предположение о том, что химические вещества могут быть как-то связаны с наследственностью, было выдвинуто лишь в 19-м веке. Изучением этой проблемы на тот момент занимались биохимик Ф. Мишер и братья-биологи Гертвиги. В 1928 году отечественный ученый Н. К. Кольцов, опираясь на результаты исследований, предположил, что все наследственные свойства живых организмов закодированы и размещены в гигантских «наследственных молекулах». При этом он заявил, что эти молекулы состоят из упорядоченных звеньев, которые, собственно, и являются генами. Это определенно было прорывом. Также Кольцов определил, что данные «наследственные молекулы» упакованы в клетках в особые структуры, названные хромосомами. Впоследствии эта гипотеза нашла свое подтверждение и дала толчок развитию науки в 20-м веке.

Развитие науки в 20-м веке

Развитие генетики и дальнейшие исследования привели к ряду не менее важных открытий. Было установлено, что каждая хромосома в клетке содержит всего одну огромную молекулу ДНК, состоящую из двух нитей. Ее многочисленные отрезки - это гены. Основная их функция заключается в том, что они особым образом кодируют информацию о строении белков-ферментов. Но реализация наследственной информации в определенные признаки протекает при участии другого типа нуклеиновой кислоты - РНК. Она синтезируется на ДНК и снимает копии с генов. Она же переносит информацию на рибосомы, где и происходит синтез ферментных белков. было выяснено в 1953 г., а РНК - в период с 1961 по 1964 год.

С этого времени молекулярная генетика стала развиваться семимильными шагами. Эти открытия стали основой исследований, в результате которых были раскрыты закономерности развертывания наследственной информации. Этот процесс осуществляется на молекулярном уровне в клетках. Также были получены принципиально новые сведения о хранении информации в генах. Со временем было установлено, как происходят механизмы удвоения ДНК перед (репликация), процессы считывания информации молекулой РНК (транскрипция), синтез белков-ферментов (трансляция). Также были обнаружены принципы изменения наследственности и выяснена их роль во внутренней и внешней среде клеток.

Расшифровка структуры ДНК

Методы генетики интенсивно развивались. Важнейшим достижением стала расшифровка хромосомной ДНК. Выяснилось, что существует всего два типа участков цепи. Они отличаются друг от друга расположенностью нуклеотидов. У первого типа каждый участок своеобразен, то есть ему присуща уникальность. Второй же содержал разное количество регулярно повторяющихся последовательностей. Они были названы повторами. В 1973 году был установлен тот факт, что уникальные зоны всегда прерываются определенными генами. Отрезок всегда заканчивается повтором. Этот промежуток кодирует определенные ферментативные белки, именно по ним «ориентируется» РНК при считывании информации с ДНК.

Первые открытия в генной инженерии

Появляющиеся новые методы генетики повлекли за собой дальнейшие открытия. Было выявлено уникальное свойство всей живой материи. Речь идет о способности восстанавливать поврежденные участки в цепи ДНК. Они могут возникать в результате различных негативных воздействий. Способность к самовосстановлению была названа «процессом генетической репарации». В настоящее время многие именитые ученые высказывают достаточно подкрепленные фактами надежды на возможность «выхватывать» определенные гены из клетки. Что это может дать? В первую очередь возможность устранять генетические дефекты. Изучением таких проблем занимается генетическая инженерия.

Процесс репликации

Молекулярная генетика изучает процессы передачи наследственной информации при размножении. Сохранение неизменности записи, кодируемой в генах, обеспечивается точным ее воспроизведением во время деления клеток. Весь механизм данного процесса изучен в деталях. Оказалось, что непосредственно перед тем, как происходит деление в клетке, осуществляется репликация. Это процесс удвоения ДНК. Он сопровождается абсолютно точным копированием первоначальных молекул по правилу комплементарности. Известно, что в составе нити ДНК всего четыре типа нуклеотидов. Это гуанин, аденин, цитозин и тимин. Согласно правилу комплементарности, открытому учеными Ф. Криком и Д. Уотсоном в 1953 году, в структуре двойной цепи ДНК аденину соответствует тимин, а цитидиловому нуклеотиду - гуаниловый. Во время процесса репликации происходит точное копирование каждой цепи ДНК путем подстановки нужного нуклеотида.

Генетика - наука сравнительно молодая. Процесс репликации был изучен лишь в 50-х годах 20-го века. Тогда же был обнаружен фермент ДНК-полимераза. В 70-е годы, после многолетних исследований, было установлено, что репликация - процесс многостадийный. В синтезе молекул ДНК принимают непосредственное участие несколько различных видов ДНК-полимераз.

Генетика и здоровье

Все сведения, связанные с точечным воспроизведением наследственной информации во время процессов широко применяются в современной медицинской практике. Досконально изученные закономерности свойственны как здоровым организмам, так и в случаях патологических изменений в них. Например, доказано и подтверждено опытами, что излечение некоторых болезней может быть достигнуто при влиянии извне на процессы репликации генетического материала и деления Особенно если патология функционирования организма связана с процессами метаболизма. Например, такие заболевания, как рахит и нарушение фосфорного обмена, напрямую вызваны угнетением репликации ДНК. Как же можно изменить такое состояние извне? Уже синтезированы и опробованы лекарственные препараты, стимулирующие угнетенные процессы. Они активизируют репликацию ДНК. Это способствует нормализации и восстановлению патологических состояний, связанных с заболеванием. Но генетические исследования не стоят на месте. С каждым годом получают все больше данных, помогающих не просто излечить, а предотвратить возможную болезнь.

Генетика и лекарственные препараты

Очень многими вопросами здоровья занимается молекулярная генетика. Биология некоторых вирусов и микроорганизмов такова, что их деятельность в организме человека порой приводит к сбою репликации ДНК. Также уже установлено, что причиной некоторых заболеваний является не угнетение этого процесса, а чрезмерная его активность. Прежде всего, это вирусные и бактериальные инфекции. Они обусловлены тем, что в пораженных клетках и тканях начинают ускоренными темпами размножаться патогенные микробы. Также к данной патологии относятся онкологические заболевания.

В настоящее время существует целый ряд лекарственных средств, которые способны подавить репликацию ДНК в клетке. Большую часть из них синтезировали советские ученые. Эти лекарства широко применяются в медицинской практике. К ним относится, например, группа противотуберкулезных препаратов. Существуют и антибиотики, подавляющие процессы репликации и деления патологических и микробных клеток. Они помогают организму быстро справиться с чужеродными агентами, не давая им размножаться. Такие лекарственные препараты обеспечивают отличный лечебный эффект при большинстве серьезных острых инфекций. А особенно широкое применение данные средства нашли при лечении опухолей и новообразований. Это приоритетное направление, которое выбрал институт генетики России. Каждый год появляются новые улучшенные препараты, препятствующие развитию онкологии. Это дает надежду десяткам тысяч больных людей по всему миру.

Процессы транскрипции и трансляции

После того как были проведены опытные лабораторные тесты по генетике и получены результаты о роли ДНК и генов как матриц для синтеза белков, некоторое время ученные высказывали мнение, что аминокислоты собираются в более сложные молекулы тут же, в ядре. Но после получения новых данных стало ясно, что это не так. Аминокислоты не строятся на участках генов в ДНК. Было установлено, что этот сложный процесс протекает в несколько этапов. Сначала с генов снимаются точные копии - информационные РНК. Эти молекулы выходят из ядра клетки и передвигаются к особым структурам - рибосомам. Именно на этих органеллах и происходят сборка аминокислот и синтез белков. Процесс получения копий ДНК получил название «транскрипция». А синтез белков под контролем информационной РНК - «трансляция». Изучение точных механизмов этих процессов и принципов влияния на них - главные современные задачи по генетике молекулярных структур.

Значение механизмов транскрипции и трансляции в медицине

В последние годы стало очевидным, что скрупулезное рассмотрение всех этапов транскрипции и трансляции имеет большое значение для современного здравоохранения. Институт генетики РАН уже давно подтвердил тот факт, что при развитии практически любого заболевания отмечается интенсивный синтез токсических и просто вредных для организма человека белков. Этот процесс может протекать под контролем генов, которые в нормальном состоянии неактивны. Либо это введенный синтез, за который ответственны проникшие в клетки и ткани человека патогенные бактерии и вирусы. Также образование вредных белков могут стимулировать активно развивающиеся онкологические новообразования. Именно поэтому доскональное изучение всех этапов транскрипции и трансляции в настоящее время исключительно важно. Так можно выявить способы борьбы не только с опасными инфекциями, но и с раком.

Современная генетика - это непрерывные поиски механизмов развития заболеваний и лекарственных препаратов для их лечения. Сейчас уже возможно ингибировать процессы трансляции в пораженных органах или организме в целом, тем самым подавить воспаление. В принципе, именно на этом и построено действие большинства известных антибиотиков, например, тетрациклинового или стрептомицинового ряда. Все эти лекарственные препараты выборочно ингибируют в клетках процессы трансляции.

Значение исследования процессов генетической рекомбинации

Очень большое значение для медицины имеет также детальное изучение процессов генетической рекомбинации, которая отвечает за передачу и обмен участков хромосом и отдельных генов. Это важный фактор в развитии инфекционных заболеваний. Генетическая рекомбинация лежит в основе проникновения в клетки человека и внедрения в ДНК чужеродного, чаще вирусного, материала. В результате происходит синтез на рибосомах не «родных» организму белков, а патогенных для него. По этому принципу происходит репродукция в клетках целых колоний вирусов. Методы направлены на разработку средств борьбы с инфекционными заболеваниями и для предотвращения сборки патогенных вирусов. Кроме того, накопление информации о генетической рекомбинации позволило понять принцип обмена генов между организмами, что привело к появлению геномодифицированных растений и животных.

Значение молекулярной генетики для биологии и медицины

За последнее столетие открытия сначала в классической, а потом уже в молекулярной генетике оказали огромное, и даже решающее влияние на прогресс всех биологических наук. Особенно сильно шагнула вперед медицина. Успехи генетических исследований позволили понять некогда непостижимые процессы наследования генетических признаков и развития индивидуальных особенностей человека. Примечательно и то, как быстро эта наука из чисто теоретической переросла в практическую. Она стала важнейшей для современной медицины. Детальное изучение молекулярно-генетических закономерностей послужило базой для понимания процессов, происходящих в организме как больного, так и здорового человека. Именно генетика дала толчок развитию таких наук, как вирусология, микробиология, эндокринология, фармакология и иммунология.

ГЕНЕТИКА (греч. genetikos относящийся к происхождению) - наука о наследственности и изменчивости организмов.

Предмет и методы генетики. Предметом изучения Г. являются два свойства организмов - наследственность (см.) и изменчивость (см.). Наследственность - свойство организмов передавать следующему поколению присущие данному организму особенности становления в ходе онтогенеза определенных черт строения и типа обмена веществ. Передача особенностей организма следующим поколениям возможна только в процессе размножения или самовоспроизведения.

Самовоспроизведение организмов может осуществляться путем вегетативного размножения, когда из частей родительской особи возникает организм потомков. Так, картофель, напр., разводится в основном клубнями. У низших животных, таких как гидра, некоторые клетки воспроизводят целое животное. Микроорганизмы размножаются преимущественно путем деления, некоторые размножаются почкованием, а плесени и дрожжи - путем образования спор. Такие доклеточные формы организации живой материи, как вирусы, размножаются путем репродукции в чувствительной клетке, где сперва идет раздельный синтез вирусной нуклеиновой к-ты (ДНК или РНК) и белка, а затем происходит их объединение и формирование вирусных частиц (см. Вирусы). Высшие же организмы осуществляют воспроизведение себе подобных путем полового размножения. Новое дочернее поколение при половом размножении возникает в результате слияния женской и мужской половых клеток.

Другим свойством организмов, входящим в предмет исследования Г., является изменчивость. Изменчивость - свойство живых организмов, заключающееся в изменении генов и их проявления в процессе развития организма, т. е. изменчивость является свойством, противоположным наследственности.

Различают фенотипическую (модификационную) и генотипическую изменчивость.

Фенотипическая изменчивость организмов связана с тем, что в процессе индивидуального развития, который совершается в определенных условиях окружающей среды, может наблюдаться изменение морфол., физиол., биохим, и других особенностей организмов. Однако свойства, приобретенные организмом в результате такой изменчивости, не наследуются, хотя пределы флюктуации признака (норма реакции) организма определяются его наследственностью, т. е. совокупностью генов.

Генотипическая изменчивость организмов обусловлена либо изменением собственно генетического материала - мутациями (см. Мутация), либо возникновением новых сочетаний генов - рекомбинацией (см.). В зависимости от этого генетическая изменчивость подразделяется на мутационную и рекомбинативную (комбинативную).

Изучение наследственности и изменчивости живых систем ведется на разных уровнях организации живой материи - на молекулярном, хромосомном, клеточном, организменном и популяционном с привлечением методов смежных дисциплин, таких как биохимия, биофизика, иммунология, физиология и т. д. Этим объясняется то, что в Г. большое количество конкретных разделов выделилось в самостоятельные научные дисциплины, такие как молекулярная, биохим, физиол, и мед. генетика, иммуногенетика, феногенетика, филогенетика, популяционная генетика и др. Из них большое значение для медицины имеют феногенетика, к-рая изучает роль генов в индивидуальном развитии особи; физиологическая генетика, изучающая наследственную обусловленность физиологии организмов и влияние на нее факторов окружающей среды; иммуногенетика, фармакогенетика и генетика патогенности и вирулентности микроорганизмов; генетика популяций, выясняющая законы наследственности и изменчивости в экологических природных условиях.

Основным методом исследования наследственности и изменчивости организмов является генетический анализ (см.), который включает ряд частных методов. Наиболее информативным и специфическим методом генетического анализа является выяснение природы выбранного для такого анализа признака. Этот метод предусматривает систему скрещиваний в ряде поколений или изучение семейной приуроченности интересующего признака с целью анализа за кономерностей наследования отдельных свойств и признаков организмов (см. Инбридинг , Близнецовый метод). Генетический анализ располагает также частными методами анализа: рекомбинационным, мутаци онным, комплементационным и популяционным.

Процесс материальной преемственности в поколениях отдельных клеток и организмов изучают с помощью цитол. метода, который в сочетании с генетическим получил название цитогенетического метода изучения наследственности. После открытия генетической роли нуклеиновых к-т успешно развивается метод молекулярного анализа структуры и функционирования гена. Феногенетический метод предусматривает изучение действия гена и его проявления в индивидуальном развитии организма. Для этого используются такие приемы, как трансплантация наследственно различных тканей, пересадка ядер из одной клетки в другую и т. д. Анализ таких генетических явлений ведут также с привлечением новейших методов различных отраслей естествознания, в особенности биохимии, однако все используемые методы других дисциплин для Г. являются только вспомогательными к основному методу - генетическому анализу.

Основные этапы и направления развития генетики. Всевозможные гипотезы о природе наследственности и изменчивости высказывались еще на заре культуры человечества. Основой для них служили наблюдения человека над самим собой, а также результаты опытов, полученные при разведении животных и выращивании растений. Уже в те времена человек производил определенный отбор, т. е. оставлял для дальнейшего воспроизводства только тех животных или те растения, которые обладали ценными для него качествами. Благодаря такой примитивной селекции человеку удалось создать большое число видов различных домашних животных и культурных растений- Первые сочинения по наследственности и изменчивости появились лишь в 17 в., когда Камерарцус (R. Camerarius) в 1694 г. опубликовал «Записки о поле у растений», где сделал вывод, что растения, как и животные, имеют половую дифференциацию. Он также высказал предположение, что опыление растения одного вида пыльцой другого вида может привести к возникновению новых форм. В начале 18 в. стали получать гибриды и описывать их. Первые научные исследования по гибридизации осуществил Кельрейтер (J. Kolreuter) в 60-х гг. 18 в. Он показал, что в качестве отцовского или материнского растения может быть использован любой из родительских видов, Т. к. при скрещивании в обоих направлениях получаются одинаковые гибриды, т. е. в передаче наследственности играют одинаковую роль как пыльца, так и семяпочка.

В дальнейшем исследованием растительных гибридов с целью выявления закономерностей появления в них родительских признаков занимались многие исследователи - Найт (Th.Knight), Ноден (Ch. Naudin) и др. Их наблюдения еще не могли стать базой для формирования науки, однако наряду с бурным развитием племенного животноводства, а также растениеводства и семеноводства во второй половине 19 в. они возбудили повышенный интерес к анализу явлений наследственности.

Особенно сильно развитию науки о наследственности и изменчивости способствовало учение Ч. Дарвина (1859) о происхождении видов, к-рое обогатило биологию историческим методом исследования эволюции организмов. Дарвин приложил много усилий для изучения явлений наследственности и изменчивости, и хотя ему не удалось установить закономерности наследственности, он все же собрал большое количество фактов, сделал на их основе целый ряд правильных выводов и доказал, что виды непостоянны и что они произошли от других видов, которые отличались от ныне живущих.

Основные законы Г. были открыты и сформулированы чеш. естествоиспытателем Г. Менделем, экспериментировавшим с различными сортами гороха (1865). Результаты своих исследований Г. Мендель изложил в ставшей классической книге «Опыты с растительными гибридами», опубликованной в 1866 г. Для опытов по гибридизации им были использованы два сорта гороха, которые различались по форме семян или окраске цветов. Это позволило Г. Менделю практически разработать методы генетического анализа наследования отдельных признаков и установить принципиально важное положение, гласящее, что признаки определяются отдельными наследственными факторами, передающимися через половые клетки, и что отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве (см. Менделя законы). Хотя Г. Мендель ничего не знал о местонахождении наследственных факторов в клетке, об их хим. природе и механизме влияния на тот или иной признак организма, тем не менее его учение о наследственных факторах как единицах наследственности легло в основу теории гена (см. Ген).

Однако принципиальные результаты опытов Г. Менделя были поняты биологами лишь в 1900 г., когда голл. ботаник X. де Фрис и почти одновременно с ним нем. ботаник Корренс (С. Correns) и австр. учецый Чермак (E. Tschermak) вторично открыли законы наследования признаков. С этого времени началось бурное развитие Г., утверждавшей принципы дискретности в явлениях наследования, а 1900 г. принято считать официальной датой рождения Г.

В 1906 г. на III Международном конгрессе по гибридизации по предложению Бейтсона (W. Bateson) наука, изучающая наследственность и изменчивость, была названа генетикой, а менделевская единица наследственности по предложению Иогансена (W. Johannsen) вскоре получила название «ген» (1909).

В 1901 г. X. де Фрис сформулировал теорию мутаций, гласящую, что наследственные свойства и признаки организмов изменяются скачкообразно, т. е. в результате мутаций (см. Мутация). Вскоре было установлено, что наследственные факторы связаны с хромосомами, а в 1911г. Т. Морган, Бриджиз (С. В. Bridges), Меллер (Н. J. Muller), Стертевант (A. H. Sturtevant) и др. создали хромосомную теорию наследственности (см.) и экспериментально доказали, что основными носителями генов являются хромосомы и что гены располагаются в хромосоме в линейном порядке (см. Хромосомы).

Создание хромосомной теории сделало центральной теорией Г. материалистическую концепцию гена. Руководствуясь этой теорией, генетики в 30-50-е гг. 20 в. получили возможность осуществить исследования, результаты которых имели огромное принципиальное значение.

В 1926-1929 гг. С. С. Четвериков с сотр. первым провел экспериментальный генетический анализ популяций дрозофилы, чем заложил основы современного направления в популяционной и эволюционной Г. Большой вклад в развитие популяционной генетики (см.) сделали амёр. ученый Райт (S. Wright) и англ. ученые Фишер (R. Fisher, 1890-1962) и Холдейн (J. В. S. Haldane, 1892-1964), заложившие в 20-30-х гг. основы генетико-математического метода и генетической теории отбора. Для развития экспериментальной Г. популяций много сделали советские ученые Н. П. Дубинин, Д. Д. Ромашов и Н. В. Тимофеев-Ресовский.

В разработку генетических основ селекции крупный вклад внесли советские генетики М. Ф. Иванов, А. С. Серебровский, Б. И. Васин, П. И. Кулешов и др.

В 1929-1934 гг. Н. П. Дубинин, А. С. Серебровский и др. впервые выдвинули и экспериментально подтвердили идею о дробимости гена, согласно к-рой ген представляет собой сложную систему со своей особой внутренней организацией и с ложностью функций. В 1943 г. опытами по определению эффекта положения генов у дрозофилы Н. П. Дубинин и Б. Н. Сидоров исчерпывающе доказали, что нормальный доминантный ген в результате изменения генного окружения в хромосоме теряет такое важное свойство, как доминантность (см.). Открытое явление свидетельствовало о том, что действие гена находится в связи с его положением в хромосоме.

В 1925 г. Г. А. Надсон и Г. С. Филиппов на дрожжах и в 1927 г. Меллер на дрозофиле получили наследственные изменения (мутации) под влиянием рентгеновских лучей. Почти одновременно с Меллером радиационные мутации у растений получил Стадлер (L. J. Stadler). Т. о., впервые экспериментальна была доказана изменчивость генов под влиянием факторов окружающей среды.

Открытие мутагенеза под влиянием хим. веществ было по своему значению равно открытию мутационного действия радиационного облучения. Было установлено, что многие хим. вещества резко повышают частоту мутаций по сравнению со спонтанным фоном. И. А. Раппопорт открыл мощное мутагенное действие этиленимина (1946), к-рое впоследствии было широко использовано для создания высокопродуктивных штаммов продуцентов антибиотиков (С. И. Алиханян, С. Ю. Гольдинг и др., 1967).

В 1941 г. Бидл (G. W. Beadle) и Тейтем (E. L. Tatum) в США получили биохим, мутации у нейроспоры, что положило начало изучению механизмов генетического контроля метаболизма клетки.

Принципиальным этапом в развитии направления, ставшего в дальнейшем центральным при создании молекулярной генетики (см.), явилась речь Н. К. Кольцова «Физикохимические основы биологии», к-рую он произнес на III Всероссийском съезде анатомов, зоологов и гистологов в 1927 г. Н. К. Кольцов высказал и развил взгляд, который позже был положен в основу всей молекулярной биологии, а именно, что сущность явлений наследственности надо искать в молекулярных структурах тех веществ в клетке, которые являются носителями этих свойств. Он развил матричную теорию ауторепродукции хромосом, считая, что исходная хромосома является матрицей (шаблоном) для; дочерней хромосомы. Конкретные мeханизмы размножения наследственных молекул оказались иными, однако идейные принципы современных представлений о репродукции молекул были созданы Н. К. Кольцовым.

Крупный вклад в генетику был внесен в 1920-1940 гг. Н. И. Вавиловым. В предложенном им законе рядов гомологичной изменчивости и центров генофонда показано эволюционное происхождение направленности мутаций у родственных форм. Все это позволило Н. И. Вавилову (1936) обосновать такой подход к проблемам вида, который позволял представить вид как сложную систему в определенных условиях окружающей среды. Н. И. Вавилов творчески обосновал учение о генетических основах селекции (см. Искусственный отбор).

В области мед. Г. наша страна уже в 30-е гг. 20 в. заняла ведущее положение в мире. В особенности это проявилось в области Г. нервных болезней, изучение которых прободалось под руководством С. Н. Давиденкова. Им были обнаружены признаки, связанные с неполным проявлением генов и их гетерозиготностью при различных нервных болезнях. Давиденков описал большое число наследственных факторов, коррелятивно влияющих на нервную систему. Он охарактеризовал и классифицировал более ста заболеваний ц. н. с. и сделал первую попытку обобщить и представить данные об эволюции генофонда человечества.

Т. о., к 40-м гг. 20 в. Г. как наука достигла значительных успехов, а советская Г. заняла ведущее место в мировой науке о наследственности и изменчивости. Однако по-прежнему было принято считать, что материальной основой гена является белок. В 1944 г. Эйвери (О. Т. Avery), Мак-Лауд (G. М. MacLeod) и Мак-Карти (М. McCarty) доказали, что веществом, ответственным за передачу наследственных признаков у Diplococcus pneumoniae, является дезоксирибонуклеиновая к-та (ДНК). Это явилось стимулом для изучения хим., физ. и генетической сущности ДНК, началом периода молекулярной Г. Вслед за открытием трансформации (см.) большую роль в развитии Г. сыграло открытие полового процесса у бактерий - конъюгации (см. Конъюгация у бактерий) и способности фагов переносить генетический материал от одних бактерий к другим - так наз. трансдукции (см.). Именно с этого времени генетики начинают работать на организмах, обладающих относительной генетической простотой, т. е. на бактериях и на бактериальных вирусах.

Исключительным событием в Г. явилась расшифровка структуры молекулы ДНК Дж. Уотсоном и Ф. Криком (1953). Это открытие сделало возможным раскрытие тайны генетического кода (см.). Благодаря расшифровке генетического кода оказался разгаданным механизм последовательного соединения остатков аминокислот в строящихся молекулах полипептидов и белков. За этим последовали другие открытия: синтез генома фага X174 (А. Корнберг с соавт., 1967), выделение из E. coli lac-оперона [Шапиро (J.Shapiro) с соавт., 1969], выделение гена, управляющего синтезом рибосомальной РНК [Колли (Colli), Ойши (Oishi) и соавт., 1970; Спадари (Spadari) и соавт., 1971], выделение гена, контролирующего синтез тирозиновой транспортной РНК [Маркс (Marks) и соавт., 1971], выделение генов II области фага Т4 [Голдберг (I. Н. Goldberg, 1969], химический синтез гена аланиновой транспортной РНК дрожжей, состоящего из 77 нуклеотидов (X. Корана и др., 1968).

Следующим этапом развития молекулярной Г. было создание концепции о передаче генетической информации. Эта концепция получила название «центральной догмы молекулярной биологии». Ее содержание сводилось к тому, что передача генетической информации идет лишь в одном направлении: ДНК-> иРНК-> белок. Между тем исследованиями Темина (H. Temin, 1970) и Балтимора (D. Baltimore, 1970) было установлено, что опухолевые РНК-содержащие вирусы обладают ферментом, под влиянием к-рого вирусная РНК становится матрицей для синтеза ДНК, т. е. осуществляется обратная передача генетической информации (обратная транскрипция) с молекул РНК на ДНК. Этот фермент получил название «обратная транскриптаза». Открытие этого явления имеет глубокое методологическое значение, т. к. свидетельствует о том, что хотя генетический код зашифрован в молекулах ДНК или РНК, но сущность наследственности этим не ограничивается, а заключается во взаимодействии белков и нуклеиновых к-т. Это подтверждается и тем, что все генетические процессы, связанные с ДНК, требуют для своего осуществления наличия ферментов, т. е. белков. В частности, такие процессы, как репликация, рекомбинация, мутация, репарация поврежденной хим. и физ. факторами молекулы ДНК, требуют участия соответствующих ферментов, т. е. сущность наследственности заключается во взаимодействии ДНК, РНК и белка в клетке.

Наряду с изучением хромосомных факторов наследственности большое теоретическое значение имеет выяснение роли так наз. внехромосомных факторов наследственности у бактерий - эписом. К эписомам относятся умеренные бактериофаги, половые факторы, факторы множественной резистентности к лекарственным веществам и бактериоциногенные факторы (см. Эписомы). Для мед. генетиков проблема эписом представляет собой интерес, т. к. получены экспериментальные данные, свидетельствующие о том, что гены, определяющие вирулентность бактерий, имеют не только хромосомную природу, но часто входят и в состав эписом. Достаточно отметить, что патогенные свойства некоторых бактерий, как, напр., возбудителя дифтерии, ботулизма, а также патогенных стафилококков и стрептококков, связаны с лизогенизацией их бактериофагами, имеющими в составе ДНК гены, детерминирующие синтез токсических продуктов. Выделение таких лизогенных бактерий из смеси с профагами приводило к возникновению авирулентных культур.

Т. о., историю развития Г. можно разделить на три этапа. Первый этап - период классической генетики (1900-1930), обусловленный созданием теории дискретной наследственности (менделизм). Второй этап (1930-1953) характеризуется углублением принципов классической Г., но вместе с тем и пересмотром ряда ее положений. В это время были открыты возможности искусственного получения мутаций, обнаружено и доказано сложное строение гена, установлено, что именно ДНК, а не белок, является материальным носителем наследственности (см.).

Третьим этапом развития Г. можно считать период ее развития с 1953 г., когда практически полностью была выявлена генетическая роль молекул ДНК и раскрыта ее структура. Дальнейшие исследования в этой области, а особенно в области ДНК-зависимого синтеза белка, неразрывно связали Г. с биохимией.

Начиная с 1953 г. особенно интенсивно идет проникновение Г. в смежные науки, в частности особое значение приобретает биохимическая генетика (см.) и медицинская генетика (см.).

Последовательное применение принципа «один ген - один фермент» (т. е. один ген ответственен за синтез одного фермента) дало возможность выяснить механизм возникновения ряда наследственных дефектов обмена у человека и установить, нарушение синтеза какого именно фермента или вещества вызывает такие болезни человека, как фенил кетонурия, алкаптонурия, тирозиноз, альбинизм, гемофилия, различные формы наследственного кретинизма, серповидноклеточной анемии и других гемоглобинопатий и т. д.

В этот же период развивается учение о хромосомных болезнях человека. В 1956 г. впервые удалось определить истинное диплоидное число хромосом человека (46), а уже в 1959 г. установить, что при болезни Дауна во всех клетках тела человека обнаруживается лишняя 21-я хромосома, в результате чего был сделан вывод, что это заболевание вызвано нерасхождением пар хромосом 21 при образовании гамет (обычно яйцеклетки) .

Почти одновременно было установлено, что три формы врожденных аномалий пола (синдром Клайнфелтера, синдром Шерешевского-Тернера и аномалия, ведущая к умственной отсталости и бесплодию) вызваны нарушением набора половых хромосом. Выяснилось, что все эти три формы возникают в результате нерасхождения половых хромосом при образовании гаметы. Наряду с этими типичными хромосомными болезнями описано более 200 различных синдромов, вызываемых более сложными типами нерасхождения хромосом.

Открытие роли хромосом в возникновении многих врожденных аномалий и наследственных заболеваний привело к бурному развитию цитогенетики (см.) и ее прочной связи с медициной.

Цитогенетика стремительно проникает в онкологию. Выяснено значение хромосомных аномалий соматических клеток и соматического отбора в развитии злокачественных опухолей. Установлено, что опухолевые клетки имеют, как правило, аномальные хромосомные комплексы и что в ходе канцерогенеза происходит интенсивная конкуренция между клетками разного кариотипа и генотипа (см. Генетика соматических клеток).

Выявление большого числа наследственных болезней эндокринной системы, являющихся следствием аномального набора половых хромосом, привело к тесному контакту между Г. и эндокринологией.

Отмечается все большее проникновение Г. в иммунологию и особенно в радиобиологию. Получены экспериментальные данные, позволяющие сделать вывод о том, что в основе лучевой болезни лежит повреждение наследственных элементов значительной части клеток организма.

Стремительное развитие Г. в 60-е гг. 20 в. не могло не оказать влияния на ряд смежных с нею дисциплин. Было продемонстрировано интенсивное действие естественного отбора в отношении генных мутаций, некоторых типов хромосомных перестроек. Все это привело к созданию эволюционной Г. (см. Эволюционное учение), изучающей распространение и закрепление ряда мутаций в ходе естественного отбора и при видообразовании. Именно методами эволюционной Г. (в опытах с микроорганизмами и насекомыми) было показано, что наследственное приспособление к окружающей среде совершается не в результате адекватного изменения наследственных свойств индивидуального организма под воздействием внешнего фактора, а в результате направленного отбора наследственных изменений, возникающих независимо от того фактора среды, к к-рому идет приспособление.

Интенсивно развивается учение о сбалансированном наследственном полиморфизме человека, заключающемся в существовании в популяциях человека не менее двух аллелей одного и того же гена, причем оба аллеля (а иногда и многие аллели) встречаются с частотой, исключающей распространение менее частого аллеля без участия интенсивного отбора. Так, помимо 15 систем антигенов эритроцитов (групп крови А, В, 0, NH, резус и т. д.), открывается большое число групп лейкоцитов и тромбоцитов, белков плазмы, различных ферментов, наследственных систем выделения и обмена и т. п. Обнаружение резких наследственных различий в реакции на некоторые медикаменты уже привело к бурному развитию совершенно новой области мед. Г.- фармакогенетики (см.). Накапливается все большее количество данных о том, что эта наследственная биохим, разнородность человечества в пределах его нормы возникает под влиянием отбора, причем в большинстве случаев отбирающим фактором явились микробные инфекции. Это подтвердилось различием наследственных вариантов гемоглобина, повышенной восприимчивостью людей с группой крови А к оспе и т. д.

Таким образом, генетика изучает и анализирует основные биол, процессы на молекулярном уровне (биосинтез, аутосинтез ДНК и гена), клеточном (физиол. Г., цитогенетика), индивидуальном (Г. индивидуальных различий, физиология размножения) и популяционном (Г. популяций), раскрывает механизмы индивидуального и филогенетического развития.

Г. устанавливает связи с цитологией, селекцией, эволюционным учением, систематикой, экспериментальной эмбриологией, биохимией, биофизикой, кибернетикой, медициной, микробиологией, иммунологией, радиобиологией. Каждую из этих наук Г. обогащает своими методами и достижениями, становясь их неотъемлемой частью, и в то же время сама обогащается данными и методами этих дисциплин. Именно это делает Г. важнейшим орудием познания сущности жизни. Раскрыв многие тайны природы, Г. сделала тем самым неоценимый вклад в развитие материалистического естествознания.

Перед Г. стоят важные задачи, вытекающие из уже установленных общих закономерностей наследственности и изменчивости. К ним прежде всего относится изучение механизма изменения гена, репродукции генов и хромосом, действие генов и контролирование ими элементарных реакций и образования сложных признаков и свойств организма в целом, взаимосвязь процессов наследственной изменчивости и отбора в развитии органической природы. Кроме того, перед Г. стоят и более близкие задачи, разрешение которых необходимо для практики, особенно для клин, медицины.

Генетика и практика

Г. как наука, стоящая на переднем крае научно-технической революции, опираясь на открытые ею законы, вносит существенный вклад во многие отрасли человеческой деятельности. Благодаря успехам Г. заложены основы микробиол, промышленности, значение к-рой все возрастает. Производство антибиотиков, аминокислот и других веществ базируется на использовании радиационных и хим. мутантов бактерий, вирусов и др.

Успехи Г. растений способствовали резкому увеличению продуктивности всех основных с.-х. культур: пшеницы, подсолнечника, кукурузы, сахарной свеклы и др. В целом работа генетиков и селекционеров позволила серьезно улучшить производство пищевых ресурсов на всей планете.

Особенно важное значение имеет Г. для решения многих мед. проблем, особенно в борьбе с инфекционными и наследственными болезнями. Только благодаря успехам Г. микроорганизмов получены продуценты антибиотиков, эффективность синтеза которых в сотни и тысячи раз больше, чем у диких штаммов этих микробов.

Особое значение для мед. практики имело обнаружение японскими исследователями Ватанабе (Т. Watanabe, 1959) и Акиба (Т. Akiba, 1959) у бактерий факторов множественной резистентности (R-факто-ров) к лекарственным веществам.

Для наследственных болезней в зависимости от того, где локализован измененный ген (аутосома или половая хромосома) и каково его взаимоотношение с нормальным аллелем (доминантная или рецессивная мутация), характерны три основных типа наследования: аутосомно-доминантный, аутосомно-рецессивный и сцепленный с полом, или ограниченный полом (см. Наследование). При заболеваниях, наследуемых по аутосомно-доминантному типу, больные мальчики и девочки рождаются с одинаковой частотой, т. к. мутационный ген проявляется уже в гетерозиготном состоянии. При заболеваниях, наследуемых по аутосомно-рецессивному типу, мутационный ген проявляется лишь в гомозиготном состоянии. При болезнях, передача которых ограничена полом (Х-хромосомный тип), действия мутационного гена проявляются только у мужчин, т. е. у гетерогаметного пола (гемофилия А, цветовая слепота и др.).

Дальнейшее углубление представлений о характере наследования различных заболеваний и особенно дальнейшее изучение влияния различных факторов окружающей среды на проявление мутационных генов позволяет яснее наметить пути профилактики, диагностики и лечения наследственных болезней (см.). Большое значение в этом отношении имеет разработка микробиол, и других экспресс-методов выявления наследственных болезней обмена. Установление этиол, фактора болезни открывает пути лечения: исключение (или ограничение) из числа продуктов питания тех соединений, метаболизм которых в организме нарушен из-за блокирования какого-либо фермента; заместительная терапия этим ферментом. В профилактике наследственных болезней огромная роль отводится системе медико-генетических консультаций (см.), значение которых все возрастает, особенно в ходе разработки методов определения гетерозиготного носительства и установления природы распространения и частоты генных и хромосомных наследственных болезней. Своевременное установление наследственной природы заболевания и типа наследования позволяет более успешно разрабатывать методы предупреждения развития болезни, особенно в раннем возрасте, и ее лечения.

Особый интерес и значение для медицины представляет быстро развивающаяся область генетики, получившая название генной инженерии (см. Генная инженерия , Генотерапия), суть к-рой заключается во введении в геном генетического материала, изменяющего наследственные свойства организма. Для осуществления генной инженерии необходимы, с одной стороны, селекция и выделение генов и, с другой - введение этих генов в геномы клеток выбранных организмов.

Большое внимание уделяется изучению механизма репарации повреждений клеточного генома. Исследования, вначале проведенные на микроорганизмах, показали, что бактериальные клетки обладают специальными системами, которые восстанавливают повреждения генетического материала (ДНК), полученные при действии ряда хим. и физ. агентов, и обеспечивают относительную устойчивость клеток к действию этих агентов. Репарация повреждения ДНК осуществляется при участии ряда ферментов, детерминируемых определенными генами (см. Репарация генетических повреждений). Репарирующие системы, впервые открытые у бактерий, присущи также и клеткам человека и животных. Напр., клетки Xeroderma pigmentosum (наследственная болезнь человека, приводящая к раку кожи) гораздо чувствительнее к УФ-облучению, чем нормальные клетки, т. к. они не могут восстанавливать участки ДНК, поврежденные ультрафиолетовыми лучами, из-за отсутствия соответствующих ферментных систем. В то же время клетки рака глаз крупного рогатого скота способны к репарации поврежденной ДНК, т. к. они содержат необходимые для этого ферменты.

Наличие систем, контролирующих репарацию ДНК, имеет общебиол. значение. Если бы механизм ликвидации нарушения структур ДНК отсутствовал, то организм оказался бы совершенно беззащитным, а химиотерапия и лекарственная терапия были бы невозможными. Интенсивно ведущиеся исследования по изучению механизма образования ферментов репарирующих систем являются весьма перспективными.

Современная Г., несмотря на уже достигнутые значительные успехи в изучении молекулярных основ наследственности, продолжает развиваться на молекулярном, субмолекулярном, клеточном, тканевом, организменном и популяционном уровнях и стала ключевой наукой современной биологии, тесно связанной в практическом отношении с сельским хозяйством, медициной, космической биологией, учением о биосфере, теорией эволюции, антропологией и общим учением о человеке.

Развитие Г. определяется ее диалектическим взаимодействием с физикой, химией, математикой и цитологией. Г. подходит к пониманию наследственности, руководствуясь принципами интеграции, целостности ее организации, и именно это приближает ее к познанию сущности жизни, дает качественно новые методы для управления ею, что позволило назвать этот этап развития Г. синтетическим. В целом же Г., как и другие науки, в 60-70-е гг. 20 в. переходит от стихийного обнаружения диалектики в основных законах жизни к сознательному использованию материалистической диалектики.

Основные центры генетических исследований и органы печати

В СССР главными центрами исследований по Г. являются: Ин-т общей генетики АН СССР, Ин-т биологии развития АН СССР, Ин-т молекулярной биологии АН СССР, Радиобиологический отдел Ин-та атомной энергии АН СССР, Ин-т мед. генетики АМН СССР, Ордена Трудового Красного Знамени Ин-т эпидемиологии и микробиологии имени почетного академика Н. Ф. Гамалеи АМН СССР, Ин-т вирусологии имени Д. И. Ивановского АМН СССР. Исследования в области мед. Г. ведутся во многих клин, ин-тах АМН СССР и М3 СССР и союзных республик, в Ин-те цитологии и генетики Сибирского отделения АН СССР (Новосибирск), Ин-те генетики и цитологии АН БССР (Минск), Ин-те цитологии АН СССР (Ленинград), Ин-те генетики и селекции промышленных микроорганизмов Главмикробиопрома (Москва), Секторе молекулярной биологии и генетики АН УССР (Киев), а также на соответствующих кафедрах МГУ, ЛГУ и других ун-тов и медвузов страны.

В 1965 г. организовано Всесоюзное об-во генетиков и селекционеров им. Н. И. Вавилова с отделениями на местах. Г. преподают во всех ун-тах, мед. и с.-х. вузах СССР.

Генетические исследования интенсивно ведутся в других социалистических странах. Г. развита в Великобритании, Индии, Италии, США, Франции, ФРГ, Швейцарии, Швеции, Японии и др. Каждые 5 лет собираются международные конгрессы по Г.

Основными печатными органами, систематически публикующими статьи по Г., являются: журнал «Генетика» АН СССР, журнал «Цитология и генетика» АН УССР. Статьи по Г. печатают также многие биол, и мед. журналы, напр. «Цитология», «Радиобиология», «Молекулярная биология».

За рубежом статьи по Г. печатаются в «Annual Review of Genetics»* «Theoretical and Applied Genetics», «Biochemical Genetics», «Molecular and General Genetics», «Heredity»> «Mutation Research», «Genetics», «Hereditas», «Journal of Heredity», «Canadian Journal of Genetics and Cytology», «Japanese Journal of Genetics», «Genetica Polonica», «Indian Journal of Genetics and Plant Breeding».

Библиография: Вавилов H. И. Избранные сочинения, Генетика и селекция, М., 1966, библиогр.; Дубинины. П. Горизонты генетики, М., 1970, библиогр.; он же, Общая генетика, М., 1976, библиогр.; Дубинины. П. и Глем-боцкий Я. Л. Генетика популяций и селекция, М., 1967, библиогр*; История биологии с начала 20-го века до наших дней, под ред. Л.Я.Бляхера, М., 1975, библиогр.; Классики советской генетики 1920-1940, под ред. П. М. Жуковского, Л., 1968; Л о-б а ш e в М. Е. Генетика, Л., 1967, библиогр.; Медведевы. Н. Практическая генетика, М., 1968, библиогр.; Мендель Г. Опыты над растительными гибридами, М., 1965, библиогр.; Морган Т. Избранные работы по генетике, пер. с англ., М.-Л., 1937, библиогр.; P иг ер Р. и Михаэлис А. Генетический и цитогенетический словарь, пер. с нем., М., 1967, библиогр.; Сэджер Р. и Райн Ф. Цитологические и химические основы наследственности, пер. с англ., М., 1964.

Периодические издания - Генетика, М., с 1965; Успехи современной генетики, М., с 1967; Цитология и генетика, Киев, с 1967; Annual Review of Genetics, Palo Alto, с 1967; Biochemical Genetics, N. Y., с 1967; Genetics, Brooklyn - N.Y., с 1916; Hereditas, Lund, с 1920; Journal of Heredity, Washington, с 1910; Molecular and General Genetics, В., с 1908; Mutation Research, Amsterdam, с 1964; Theoretical and Applied Genetisa, В., с 1929.

H. П. Дубинин, И. И. Олейник.