Kaip atimti natūraliuosius logaritmus. Logaritmas – savybės, formulės, grafikas. Kaip naudoti logaritmo formules: su pavyzdžiais ir sprendimais

Skaičiaus logaritmas N remiantis A vadinamas eksponentu X , prie kurios reikia statyti A norėdami gauti numerį N

Su sąlyga, kad
,
,

Iš logaritmo apibrėžimo išplaukia, kad
, t.y.
- ši lygybė yra pagrindinė logaritminė tapatybė.

Logaritmai, pagrįsti 10 baze, vadinami dešimtainiais logaritmais. Vietoj
rašyti
.

Logaritmai iki pagrindo e yra vadinami natūraliais ir yra paskirti
.

Pagrindinės logaritmų savybės.

    Vieneto logaritmas yra lygus nuliui bet kuriai bazei.

    Produkto logaritmas lygus faktorių logaritmų sumai.

3) koeficiento logaritmas lygus logaritmų skirtumui


veiksnys
vadinamas perėjimo iš logaritmų į bazę moduliu a prie logaritmų bazėje b .

Naudojant 2–5 savybes, dažnai galima sumažinti sudėtingos išraiškos logaritmą iki paprastų aritmetinių logaritmų operacijų rezultato.

Pavyzdžiui,

Tokios logaritmo transformacijos vadinamos logaritmais. Transformacijos, atvirkštinės logaritmui, vadinamos potenciacija.

2 skyrius. Aukštosios matematikos elementai.

1. Ribos

Funkcijos riba
yra baigtinis skaičius A, jei, kaip xx 0 už kiekvieną iš anksto nustatytą
, yra toks skaičius
kad kai tik
, Tai
.

Funkcija, turinti ribą, skiriasi nuo jos be galo mažu dydžiu:
, kur- b.m.v., t.y.
.

Pavyzdys. Apsvarstykite funkciją
.

Kai stengiamasi
, funkcija y linkęs į nulį:

1.1. Pagrindinės teoremos apie ribas.

    Pastovios vertės riba yra lygi šiai pastoviai vertei

.

    Baigtinio skaičiaus funkcijų sumos (skirtumo) riba yra lygi šių funkcijų ribų sumai (skirtumui).

    Baigtinio skaičiaus funkcijų sandaugos riba yra lygi šių funkcijų ribų sandaugai.

    Dviejų funkcijų koeficiento riba yra lygi šių funkcijų ribų daliniui, jei vardiklio riba nėra lygi nuliui.

Nuostabios ribos

,
, Kur

1.2. Ribų skaičiavimo pavyzdžiai

Tačiau ne visos ribos taip lengvai apskaičiuojamos. Dažniau apskaičiuojant ribą atskleidžiamas tipo neapibrėžtumas: arba .

.

2. Funkcijos išvestinė

Leiskite mums atlikti funkciją
, ištisinis segmente
.

Argumentas šiek tiek padidėjo
. Tada funkcija gaus prieaugį
.

Argumento vertė atitinka funkcijos reikšmę
.

Argumento vertė
atitinka funkcijos reikšmę.

Vadinasi,.

Raskime šio santykio ribą ties
. Jei ši riba egzistuoja, tada ji vadinama duotosios funkcijos išvestine.

3 apibrėžimas Nurodytos funkcijos išvestinė
argumentu vadinama funkcijos didėjimo ir argumento prieaugio santykio riba, kai argumento prieaugis savavališkai linksta į nulį.

Funkcijos išvestinė
gali būti žymimas taip:

; ; ; .

4 apibrėžimas Funkcijos išvestinės radimo operacija vadinama diferenciacija.

2.1. Mechaninė vedinio reikšmė.

Panagrinėkime tiesinį kurio nors standaus kūno ar materialaus taško judėjimą.

Leiskite tam tikru momentu judantis taškas
buvo per atstumą nuo pradinės padėties
.

Po tam tikro laiko
ji pasitraukė per atstumą
. Požiūris =- vidutinis materialaus taško greitis
. Atsižvelgdami į tai, suraskime šio santykio ribą
.

Vadinasi, momentinio materialaus taško judėjimo greičio nustatymas sumažinamas iki kelio išvestinės laiko atžvilgiu radimo.

2.2. Išvestinės geometrinė reikšmė

Turėkime grafiškai apibrėžtą funkciją
.

Ryžiai. 1. Geometrinė išvestinės reikšmė

Jeigu
, tada tašką
, judės išilgai kreivės, artėdamas prie taško
.

Vadinasi
, t.y. išvestinės reikšmė tam tikrai argumento reikšmei skaitine prasme lygus kampo, kurį sudaro liestinė tam tikrame taške su teigiama ašies kryptimi, tangentei
.

2.3. Pagrindinių diferenciacijos formulių lentelė.

Maitinimo funkcija

Eksponentinė funkcija

Logaritminė funkcija

Trigonometrinė funkcija

Atvirkštinė trigonometrinė funkcija

2.4. Diferencijavimo taisyklės.

Darinys iš

Funkcijų sumos (skirtumo) išvestinė


Dviejų funkcijų sandaugos išvestinė


Dviejų funkcijų dalinio išvestinė


2.5. Sudėtingos funkcijos išvestinė.

Tegu funkcija duota
tokia, kad ją būtų galima pavaizduoti formoje

Ir
, kur kintamasis tai yra tarpinis argumentas

Sudėtinės funkcijos išvestinė yra lygi duotosios funkcijos išvestinės tarpinio argumento ir tarpinio argumento išvestinei x atžvilgiu.

1 pavyzdys.

2 pavyzdys.

3. Diferencialinė funkcija.

Tebūnie
, skiriasi tam tikru intervalu
Paleisk adresu ši funkcija turi išvestinę

,

tada galėsime rašyti

(1),

Kur - be galo mažas kiekis,

nuo kada

Padauginus visus lygybės (1) narius iš
mes turime:

Kur
- b.m.v. aukštesnė tvarka.

Didumas
vadinamas funkcijos diferencialu
ir yra paskirtas

.

3.1. Diferencialo geometrinė vertė.

Tegu funkcija duota
.

2 pav. Geometrinė diferencialo reikšmė.

.

Akivaizdu, kad funkcijos skirtumas
yra lygus liestinės ordinatės prieaugiui tam tikrame taške.

3.2. Įvairių eilių dariniai ir diferencialai.

Jeigu ten
, Tada
vadinamas pirmuoju dariniu.

Pirmojo vedinio vedinys vadinamas antros eilės išvestiniu ir rašomas
.

Funkcijos n-osios eilės išvestinė
vadinama (n-1) eilės išvestine ir rašoma:

.

Funkcijos diferencialo diferencialas vadinamas antruoju diferencialu arba antros eilės diferencialu.

.

.

3.3 Biologinių problemų sprendimas naudojant diferenciaciją.

1 užduotis. Tyrimai parodė, kad mikroorganizmų kolonijos augimas paklūsta įstatymui
, Kur N – mikroorganizmų skaičius (tūkst.), t – laikas (dienos).

b) Ar šiuo laikotarpiu kolonijos populiacija padidės ar mažės?

Atsakymas. Kolonijos dydis padidės.

2 užduotis. Ežero vanduo periodiškai tiriamas, siekiant stebėti patogeninių bakterijų kiekį. Per t dienų po tyrimo bakterijų koncentracija nustatoma pagal santykį

.

Kada ežere bus minimali bakterijų koncentracija ir ar bus galima jame maudytis?

Sprendimas: Funkcija pasiekia max arba min, kai jos išvestinė lygi nuliui.

,

Nustatykime, maksimalus arba min. bus po 6 dienų. Norėdami tai padaryti, paimkime antrąją išvestinę.


Atsakymas: Po 6 dienų bus minimali bakterijų koncentracija.

Pagal skaičių e: ln x = log e x.

Natūralusis logaritmas plačiai naudojamas matematikoje, nes jo išvestinė yra paprasčiausia: (ln x)′ = 1/x.

Pagrįstas apibrėžimai, natūraliojo logaritmo pagrindas yra skaičius e:
e ≅ 2,718281828459045...;
.

Funkcijos y = grafikas ln x.

Natūralaus logaritmo grafikas (funkcijos y = ln x) gaunamas iš eksponentinės grafiko veidrodžio atspindžiu tiesės y = x atžvilgiu.

Natūralusis logaritmas apibrėžiamas teigiamoms kintamojo x reikšmėms. Jis monotoniškai didėja savo apibrėžimo srityje.

Ties x → 0 natūraliojo logaritmo riba yra minus begalybė (-∞).

Kaip x → + ∞, natūraliojo logaritmo riba yra plius begalybė (+ ∞). Didelio x logaritmas didėja gana lėtai. Bet kuri laipsnio funkcija x a su teigiamu eksponentu a auga greičiau nei logaritmas.

Natūralaus logaritmo savybės

Apibrėžimo sritis, reikšmių rinkinys, ekstremumai, padidėjimas, sumažėjimas

Natūralusis logaritmas yra monotoniškai didėjanti funkcija, todėl jis neturi ekstremalių. Pagrindinės natūraliojo logaritmo savybės pateiktos lentelėje.

ln x reikšmės

ln 1 = 0

Pagrindinės natūraliųjų logaritmų formulės

Formulės, išplaukiančios iš atvirkštinės funkcijos apibrėžimo:

Pagrindinė logaritmų savybė ir jos pasekmės

Bazės pakeitimo formulė

Bet koks logaritmas gali būti išreikštas natūraliais logaritmais naudojant bazinę pakeitimo formulę:

Šių formulių įrodymai pateikti skyriuje „Logaritmas“.

Atvirkštinė funkcija

Natūralaus logaritmo atvirkštinė vertė yra eksponentas.

Jei tada

Jei tada.

Išvestinė ln x

Natūralaus logaritmo išvestinė:
.
Modulio x natūraliojo logaritmo išvestinė:
.
N-osios eilės vedinys:
.
Išvestinės formulės >>>

Integralinis

Integralas apskaičiuojamas integruojant dalimis:
.
Taigi,

Išraiškos naudojant kompleksinius skaičius

Apsvarstykite kompleksinio kintamojo z funkciją:
.
Išreikškime kompleksinį kintamąjį z per modulį r ir argumentas φ :
.
Naudodami logaritmo savybes, turime:
.
Arba
.
Argumentas φ nėra vienareikšmiškai apibrėžtas. Jei įdėsite
, kur n yra sveikas skaičius,
tai bus tas pats skaičius skirtingiems n.

Todėl natūralusis logaritmas, kaip sudėtingo kintamojo funkcija, nėra vienareikšmė funkcija.

Galios serijos išplėtimas

Kai plėtra vyksta:

Nuorodos:
I.N. Bronšteinas, K.A. Semendyaev, Matematikos vadovas inžinieriams ir kolegijų studentams, „Lan“, 2009 m.

    Pradėkime nuo vieneto logaritmo savybės. Jo formuluotė yra tokia: vienybės logaritmas lygus nuliui, tai yra, log a 1=0 bet kuriam a>0, a≠1. Įrodymas nėra sudėtingas: kadangi a 0 =1 bet kuriai a, tenkinančiai aukščiau nurodytas sąlygas a>0 ir a≠1, tai įrodinėtina lygybė log a 1=0 iš karto išplaukia iš logaritmo apibrėžimo.

    Pateiksime nagrinėjamos savybės taikymo pavyzdžius: log 3 1=0, log1=0 ir .

    Pereikime prie kitos nuosavybės: skaičiaus, lygaus bazei, logaritmas lygus vienetui, tai yra, log a a=1 jei a>0, a≠1. Iš tiesų, kadangi a 1 =a bet kuriam a, tada pagal logaritmo apibrėžimą log a a = 1.

    Šios logaritmų savybės panaudojimo pavyzdžiai yra lygybės log 5 5=1, log 5.6 5.6 ir lne=1.

    Pavyzdžiui, log 2 2 7 =7, log10 -4 =-4 ir .

    Dviejų teigiamų skaičių sandaugos logaritmas x ir y yra lygūs šių skaičių logaritmų sandaugai: log a (x y)=log a x+log a y, a>0 , a≠1 . Įrodykime sandaugos logaritmo savybę. Dėl laipsnio savybių a log a x+log a y =a log a x ·a log a y, o kadangi pagal pagrindinę logaritminę tapatybę log a x =x ir log a y =y, tai log a x ·a log a y =x · y. Taigi log a x+log a y =x·y, iš kurio pagal logaritmo apibrėžimą išplaukia įrodoma lygybė.

    Parodykime gaminio logaritmo savybės panaudojimo pavyzdžius: log 5 (2 3)=log 5 2+log 5 3 ir .

    Produkto logaritmo savybę galima apibendrinti baigtinio skaičiaus n teigiamų skaičių x 1 , x 2 , …, x n sandaugai kaip log a (x 1 · x 2 ·… × n)= log a x 1 +log a x 2 +…+log a x n . Šią lygybę galima įrodyti be problemų.

    Pavyzdžiui, sandaugos natūralusis logaritmas gali būti pakeistas trijų skaičių 4, e ir natūraliųjų logaritmų suma.

    Dviejų teigiamų skaičių dalinio logaritmas x ir y yra lygus šių skaičių logaritmų skirtumui. Dalinio logaritmo savybę atitinka formos formulė, kur a>0, a≠1, x ir y yra kai kurie teigiami skaičiai. Šios formulės pagrįstumas įrodytas kaip ir sandaugos logaritmo formulė: kadangi , tada pagal logaritmo apibrėžimą.

    Štai šios logaritmo savybės naudojimo pavyzdys: .

    Pereikime prie galios logaritmo savybė. Laipsnio logaritmas lygus eksponento sandaugai ir šio laipsnio pagrindo modulio logaritmui. Parašykime šią laipsnio logaritmo savybę kaip formulę: log a b p =p·log a |b|, kur a>0, a≠1, b ir p yra tokie skaičiai, kad b p laipsnis turi prasmę, o b p >0.

    Pirmiausia įrodome šią savybę teigiamam b. Pagrindinė logaritminė tapatybė leidžia pavaizduoti skaičių b kaip log a b , tada b p =(a log a b) p , o gauta išraiška dėl galios savybės yra lygi a p·log a b . Taigi gauname lygybę b p =a p·log a b, iš kurios pagal logaritmo apibrėžimą darome išvadą, kad log a b p =p·log a b.

    Belieka įrodyti šią savybę neigiamam b. Čia pažymime, kad reiškinys log a b p neigiamam b turi prasmę tik lyginiams eksponentams p (kadangi laipsnio b p reikšmė turi būti didesnė už nulį, antraip logaritmas neturės prasmės), o šiuo atveju b p =|b| p. Tada b p =|b| p =(a log a |b|) p =a p·log a |b|, iš kur log a b p =p·log a |b| .

    Pavyzdžiui, ir ln(-3) 4 =4·ln|-3|=4·ln3 .

    Tai išplaukia iš ankstesnio turto logaritmo savybė nuo šaknies: n-osios šaknies logaritmas yra lygus trupmenos 1/n sandaugai pagal radikalios išraiškos logaritmą, tai yra, , kur a>0, a≠1, n yra natūralusis skaičius, didesnis už vienetą, b>0.

    Įrodymas grindžiamas lygybe (žr.), kuri galioja bet kokiam teigiamam b, ir galios logaritmo savybe: .

    Štai šios nuosavybės naudojimo pavyzdys: .

    Dabar įrodykime perėjimo prie naujos logaritmo bazės formulė malonus . Tam pakanka įrodyti lygybės log c b=log a b·log c a pagrįstumą. Pagrindinė logaritminė tapatybė leidžia mums pavaizduoti skaičių b kaip log a b , tada log c b=log c a log a b . Belieka naudoti laipsnio logaritmo savybę: log c a log a b =log a b log c a. Tai įrodo lygybę log c b=log a b·log c a, o tai reiškia, kad įrodyta ir perėjimo prie naujos logaritmo bazės formulė.

    Parodykime keletą šios logaritmų savybės naudojimo pavyzdžių: ir .

    Perėjimo prie naujos bazės formulė leidžia pereiti prie darbo su logaritmais, kurie turi „patogų“ pagrindą. Pavyzdžiui, jį galima naudoti norint pereiti prie natūraliųjų arba dešimtainių logaritmų, kad galėtumėte apskaičiuoti logaritmo reikšmę iš logaritmų lentelės. Perėjimo prie naujos logaritmo bazės formulė taip pat leidžia kai kuriais atvejais rasti tam tikro logaritmo reikšmę, kai žinomos kai kurių logaritmų su kitomis bazėmis reikšmės.

    Dažnai naudojamas specialus perėjimo prie naujos logaritmo bazės formulės atvejis, kai formos c=b . Tai rodo, kad log a b ir log b a – . Pvz., .

    Formulė taip pat dažnai naudojama , kuris patogus ieškant logaritmų reikšmių. Norėdami patvirtinti savo žodžius, parodysime, kaip jį galima naudoti apskaičiuojant formos logaritmo reikšmę. Mes turime . Norėdami įrodyti formulę pakanka naudoti perėjimo prie naujos logaritmo bazės a formulę: .

    Belieka įrodyti logaritmų palyginimo savybes.

    Įrodykime, kad bet kurių teigiamų skaičių b 1 ir b 2 atveju b 1 log a b 2, o a>1 – nelygybė log a b 1

    Galiausiai belieka įrodyti paskutinę iš išvardytų logaritmų savybių. Apsiribokime jo pirmosios dalies įrodymu, tai yra, įrodysime, kad jei a 1 >1, a 2 >1 ir a 1 1 yra tiesa log a 1 b>log a 2 b . Likusieji šios logaritmų savybės teiginiai įrodomi panašiu principu.

    Naudokime priešingą metodą. Tarkime, kad 1 > 1, 2 > 1 ir 1 1 yra tiesa log a 1 b≤log a 2 b . Remiantis logaritmų savybėmis, šias nelygybes galima perrašyti kaip Ir atitinkamai, o iš jų išplaukia, kad atitinkamai log b a 1 ≤log b a 2 ir log b a 1 ≥log b a 2. Tada pagal tų pačių bazių laipsnių savybes turi galioti lygybės b log b a 1 ≥b log b a 2 ir b log b a 1 ≥b log b a 2, tai yra a 1 ≥a 2 . Taigi mes priėjome prietarą sąlygai a 1

Bibliografija.

  • Kolmogorovas A.N., Abramovas A.M., Dudnicinas Yu.P. ir kt. Algebra ir analizės pradžia: Vadovėlis bendrojo ugdymo įstaigų 10 - 11 klasėms.
  • Gusevas V.A., Mordkovičius A.G. Matematika (vadovas stojantiems į technikos mokyklas).

Skaičiaus b (b > 0) logaritmas a pagrindu (a > 0, a ≠ 1)– eksponentas, iki kurio skaičius a turi būti padidintas, norint gauti b.

10 bazinis b logaritmas gali būti parašytas kaip log(b), o logaritmas iki pagrindo e (natūralus logaritmas) yra ln(b).

Dažnai naudojamas sprendžiant logaritmų problemas:

Logaritmų savybės

Yra keturi pagrindiniai logaritmų savybės.

Tegul a > 0, a ≠ 1, x > 0 ir y > 0.

Savybė 1. Produkto logaritmas

Produkto logaritmas lygi logaritmų sumai:

log a (x ⋅ y) = log a x + log a y

Savybė 2. Dalinio logaritmas

Dalinio logaritmas lygus logaritmų skirtumui:

log a (x / y) = log a x – log a y

Savybė 3. Galios logaritmas

Laipsnio logaritmas lygi galios ir logaritmo sandaugai:

Jei logaritmo pagrindas yra laipsnyje, taikoma kita formulė:

Savybė 4. Šaknies logaritmas

Šią savybę galima gauti iš laipsnio logaritmo savybės, nes laipsnio n-oji šaknis yra lygi 1/n laipsniui:

Formulė konvertuoti iš logaritmo vienoje bazėje į logaritmą kitoje bazėje

Ši formulė taip pat dažnai naudojama sprendžiant įvairias logaritmų užduotis:

Ypatinga byla:

Logaritmų (nelygybių) palyginimas

Turėkime 2 funkcijas f(x) ir g(x) pagal logaritmus su tais pačiais pagrindais ir tarp jų yra nelygybės ženklas:

Norėdami juos palyginti, pirmiausia turite pažvelgti į logaritmų bazę a:

  • Jei a > 0, tada f(x) > g(x) > 0
  • Jei 0< a < 1, то 0 < f(x) < g(x)

Kaip spręsti uždavinius su logaritmais: pavyzdžiai

Problemos su logaritmaisįtrauktas į Vieningą valstybinį matematikos egzaminą 11 klasei 5 užduotyje ir 7 užduotyje, užduotis su sprendimais galite rasti mūsų svetainės atitinkamuose skyriuose. Taip pat matematikos užduočių banke yra užduotys su logaritmais. Visus pavyzdžius rasite ieškodami svetainėje.

Kas yra logaritmas

Logaritmai visada buvo laikomi sunkia tema mokykliniuose matematikos kursuose. Yra daug skirtingų logaritmo apibrėžimų, tačiau dėl tam tikrų priežasčių dauguma vadovėlių naudoja sudėtingiausius ir nesėkmingiausius iš jų.

Logaritmą apibrėžsime paprastai ir aiškiai. Norėdami tai padaryti, sukurkime lentelę:

Taigi, mes turime dviejų galių.

Logaritmai – savybės, formulės, kaip išspręsti

Jei paimsite skaičių iš apatinės eilutės, galite lengvai rasti galią, iki kurios turėsite pakelti du, kad gautumėte šį skaičių. Pavyzdžiui, norėdami gauti 16, turite pakelti du į ketvirtą laipsnį. O norint gauti 64, reikia pakelti du iki šeštos laipsnio. Tai matyti iš lentelės.

Ir dabar - iš tikrųjų logaritmo apibrėžimas:

argumento x bazė a yra laipsnis, iki kurio reikia pakelti skaičių a, kad gautume skaičių x.

Pavadinimas: log a x = b, kur a yra bazė, x yra argumentas, b yra logaritmas iš tikrųjų lygus.

Pavyzdžiui, 2 3 = 8 ⇒log 2 8 = 3 (bazinis 2 logaritmas iš 8 yra trys, nes 2 3 = 8). Esant tokiai pat sėkmei, log 2 64 = 6, nes 2 6 = 64.

Vadinamasis skaičiaus logaritmo pagal duotąją bazę radimo operacija. Taigi, į savo lentelę įtraukime naują eilutę:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Deja, ne visi logaritmai taip lengvai apskaičiuojami. Pavyzdžiui, pabandykite rasti log 2 5. Skaičiaus 5 lentelėje nėra, bet logika nurodo, kad logaritmas bus kažkur intervale. Nes 22< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Tokie skaičiai vadinami neracionaliais: skaičiai po kablelio gali būti rašomi iki begalybės ir jie niekada nesikartoja. Jei logaritmas pasirodo neracionalus, geriau palikti jį taip: log 2 5, log 3 8, log 5 100.

Svarbu suprasti, kad logaritmas yra išraiška su dviem kintamaisiais (bazė ir argumentas). Iš pradžių daugelis žmonių painioja, kur yra pagrindas, o kur argumentas. Kad išvengtumėte erzinančių nesusipratimų, tiesiog pažiūrėkite į paveikslėlį:

Prieš mus yra ne kas kita, kaip logaritmo apibrėžimas. Prisiminti: logaritmas yra galia, į kurią turi būti įmontuota bazė, kad būtų gautas argumentas. Būtent pagrindas yra pakeltas iki galios – paveikslėlyje jis paryškintas raudonai. Pasirodo, pagrindas visada yra apačioje! Šią nuostabią taisyklę savo mokiniams sakau jau pačioje pirmoje pamokoje – ir nekyla painiavos.

Kaip skaičiuoti logaritmus

Mes išsiaiškinome apibrėžimą – belieka išmokti skaičiuoti logaritmus, t.y. atsikratyti „rąsto“ ženklo. Pirmiausia pažymime, kad iš apibrėžimo išplaukia du svarbūs faktai:

  1. Argumentas ir bazė visada turi būti didesni už nulį. Tai išplaukia iš laipsnio apibrėžimo racionaliuoju rodikliu, iki kurio logaritmo apibrėžimas sumažinamas.
  2. Pagrindas turi skirtis nuo vieno, nes vienas bet kokiu laipsniu vis tiek išlieka. Dėl šios priežasties klausimas „į kokią galią turi būti pakeltas, kad gautum du“ yra beprasmis. Tokio laipsnio nėra!

Tokie apribojimai vadinami priimtinų verčių diapazoną(ODZ). Pasirodo, logaritmo ODZ atrodo taip: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Atkreipkite dėmesį, kad skaičiui b (logaritmo reikšmei) nėra jokių apribojimų. Pavyzdžiui, logaritmas gali būti neigiamas: log 2 0,5 = −1, nes 0,5 = 2–1.

Tačiau dabar svarstome tik skaitines išraiškas, kur logaritmo VA žinoti nebūtina. Į visus apribojimus jau atsižvelgė užduočių autoriai. Tačiau kai pradės veikti logaritminės lygtys ir nelygybės, DL reikalavimai taps privalomi. Juk pagrinde ir argumente gali būti labai stiprių konstrukcijų, kurios nebūtinai atitinka minėtus apribojimus.

Dabar pažvelkime į bendrą logaritmų skaičiavimo schemą. Jį sudaro trys žingsniai:

  1. Išreikškite bazę a ir argumentą x kaip laipsnį, kurio mažiausia galima bazė yra didesnė už vienetą. Pakeliui geriau atsisakyti kablelio;
  2. Išspręskite kintamojo b lygtį: x = a b ;
  3. Gautas skaičius b bus atsakymas.

Tai viskas! Jei logaritmas pasirodys neracionalus, tai bus matoma jau pirmame žingsnyje. Reikalavimas, kad bazė būtų didesnė už vieną, yra labai svarbus: tai sumažina klaidos tikimybę ir labai supaprastina skaičiavimus. Panašiai yra ir su dešimtainėmis trupmenomis: jei iš karto jas konvertuosite į įprastas, klaidų bus daug mažiau.

Pažiūrėkime, kaip ši schema veikia, naudodami konkrečius pavyzdžius:

Užduotis. Apskaičiuokite logaritmą: log 5 25

  1. Įsivaizduokime bazę ir argumentą kaip penkių laipsnį: 5 = 5 1 ; 25 = 5 2;
  2. Sukurkime ir išspręskime lygtį:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Gavome atsakymą: 2.

Užduotis. Apskaičiuokite logaritmą:

Užduotis. Apskaičiuokite logaritmą: log 4 64

  1. Įsivaizduokime bazę ir argumentą kaip dviejų laipsnį: 4 = 2 2 ; 64 = 2 6;
  2. Sukurkime ir išspręskime lygtį:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Gavome atsakymą: 3.

Užduotis. Apskaičiuokite logaritmą: log 16 1

  1. Įsivaizduokime bazę ir argumentą kaip dviejų laipsnį: 16 = 2 4 ; 1 = 2 0;
  2. Sukurkime ir išspręskime lygtį:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Gavome atsakymą: 0.

Užduotis. Apskaičiuokite logaritmą: log 7 14

  1. Įsivaizduokime bazę ir argumentą kaip septyneto laipsnį: 7 = 7 1 ; 14 negali būti pavaizduotas kaip septynių laipsnis, nes 7 1< 14 < 7 2 ;
  2. Iš ankstesnės pastraipos matyti, kad logaritmas neskaičiuojamas;
  3. Atsakymas nesikeičia: žurnalas 7 14.

Maža pastaba apie paskutinį pavyzdį. Kaip galite būti tikri, kad skaičius nėra tiksli kito skaičiaus laipsnis? Tai labai paprasta – tiesiog įtraukite tai į pagrindinius veiksnius. Jei išplėtimas turi bent du skirtingus veiksnius, skaičius nėra tiksli galia.

Užduotis. Išsiaiškinkite, ar skaičiai yra tikslūs laipsniai: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - tikslus laipsnis, nes yra tik vienas daugiklis;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - nėra tiksli galia, nes yra du veiksniai: 3 ir 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - tikslus laipsnis;
35 = 7 · 5 - vėlgi nėra tiksli galia;
14 = 7 · 2 - vėlgi nėra tikslus laipsnis;

Taip pat atkreipkite dėmesį, kad patys pirminiai skaičiai visada yra tikslios jų galios.

Dešimtainis logaritmas

Kai kurie logaritmai yra tokie įprasti, kad turi specialų pavadinimą ir simbolį.

argumento x yra logaritmas iki 10 bazės, t.y. Galia, iki kurios reikia pakelti skaičių 10, kad gautume skaičių x. Pavadinimas: lg x.

Pavyzdžiui, log 10 = 1; lg 100 = 2; lg 1000 = 3 ir kt.

Nuo šiol, kai vadovėlyje pasirodys tokia frazė kaip „Rasti lg 0,01“, žinokite, kad tai nėra rašybos klaida. Tai yra dešimtainis logaritmas. Tačiau, jei nesate susipažinę su šiuo užrašu, visada galite jį perrašyti:
log x = log 10 x

Viskas, kas tinka įprastiniams logaritmams, galioja ir dešimtainiams logaritmams.

Natūralus logaritmas

Yra dar vienas logaritmas, turintis savo pavadinimą. Kai kuriais atžvilgiais tai net svarbesnė nei dešimtainė. Mes kalbame apie natūralų logaritmą.

argumento x yra logaritmas į bazę e, t.y. galia, iki kurios reikia pakelti skaičių e, kad gautume skaičių x. Pavadinimas: ln x.

Daugelis žmonių klaus: koks yra skaičius e? Tai yra neracionalus skaičius, kurio tikslios vertės negalima rasti ir užrašyti. Pateiksiu tik pirmuosius skaičius:
e = 2,718281828459…

Mes nesigilinsime į tai, kas yra šis skaičius ir kodėl jis reikalingas. Tiesiog atminkite, kad e yra natūraliojo logaritmo pagrindas:
ln x = log e x

Taigi ln e = 1; ln e 2 = 2; ln e 16 = 16 ir kt. Kita vertus, ln 2 yra neracionalus skaičius. Apskritai bet kurio racionalaus skaičiaus natūralusis logaritmas yra neracionalus. Žinoma, išskyrus vieną: ln 1 = 0.

Natūraliųjų logaritmų atveju galioja visos taisyklės, kurios galioja įprastiems logaritmams.

Taip pat žiūrėkite:

Logaritmas. Logaritmo savybės (logaritmo galia).

Kaip pavaizduoti skaičių kaip logaritmą?

Mes naudojame logaritmo apibrėžimą.

Logaritmas yra eksponentas, iki kurio reikia pakelti bazę, kad būtų gautas skaičius po logaritmo ženklu.

Taigi, norėdami pavaizduoti tam tikrą skaičių c kaip logaritmą bazei a, po logaritmo ženklu turite įdėti laipsnį, kurio bazė yra tokia pati, kaip ir logaritmo bazė, ir šį skaičių c įrašyti kaip eksponentą:

Visiškai bet koks skaičius gali būti pavaizduotas kaip logaritmas - teigiamas, neigiamas, sveikasis skaičius, trupmeninis, racionalus, neracionalus:

Kad nepainiotumėte a ir c įtemptomis testo ar egzamino sąlygomis, galite naudoti šią įsiminimo taisyklę:

tai, kas yra apačioje, nusileidžia, o kas yra aukščiau, kyla aukštyn.

Pavyzdžiui, skaičių 2 turite pateikti kaip logaritmą iki 3 bazės.

Turime du skaičius – 2 ir 3. Šie skaičiai yra bazė ir rodiklis, kuriuos rašysime po logaritmo ženklu. Belieka nustatyti, kuris iš šių skaičių turi būti užrašomas iki laipsnio pagrindo, o kuris – iki laipsnio.

Bazė 3 logaritmo žymėjime yra apačioje, o tai reiškia, kad pateikę du kaip logaritmą prie 3 pagrindo, 3 taip pat įrašysime į bazę.

2 yra didesnis nei trys. Žymėdami antrąjį laipsnį, rašome virš trijų, tai yra, kaip eksponentą:

Logaritmai. Pirmas lygis.

Logaritmai

Logaritmas teigiamas skaičius b remiantis a, Kur a > 0, a ≠ 1, vadinamas eksponentu, iki kurio skaičius turi būti padidintas a, Gauti b.

Logaritmo apibrėžimas trumpai galima parašyti taip:

Ši lygybė galioja b > 0, a > 0, a ≠ 1. Paprastai tai vadinama logaritminė tapatybė.
Skaičiaus logaritmo radimo veiksmas vadinamas pagal logaritmą.

Logaritmų savybės:

Produkto logaritmas:

koeficiento logaritmas:

Logaritmo bazės pakeitimas:

Laipsnio logaritmas:

Šaknies logaritmas:

Logaritmas su galios baze:





Dešimtainiai ir natūralūs logaritmai.

Dešimtainis logaritmas skaičiai iškviečia šio skaičiaus logaritmą iki 10 ir rašo   lg b
Natūralus logaritmas skaičiai vadinami to skaičiaus logaritmu iki bazės e, Kur e- neracionalusis skaičius, maždaug lygus 2,7. Tuo pat metu jie rašo ln b.

Kitos pastabos apie algebrą ir geometriją

Pagrindinės logaritmų savybės

Pagrindinės logaritmų savybės

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tais pačiais pagrindais: log a x ir log a y. Tada juos galima pridėti ir atimti, ir:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis dalykas čia yra identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Rąstas 6 4 + rąstas 6 9.

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log 2 48 − log 2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log 3 135 − log 3 5.

Vėlgi, bazės yra tos pačios, todėl turime:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Dabar šiek tiek apsunkinkime užduotį. Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x > 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai , t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą.

Kaip išspręsti logaritmus

Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log 7 49 6 .

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslieji laipsniai: 16 = 2 4 ; 49 = 7 2. Mes turime:

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu. Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log 2 7. Kadangi log 2 7 ≠ 0, trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Tegu pateiktas logaritmas log a x. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Konkrečiai, jei nustatome c = x, gauname:

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti vietomis, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai randamos įprastose skaitinėse išraiškose. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log 5 16 log 2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Dabar „atsukkime“ antrąjį logaritmą:

Kadangi sandauga nesikeičia pertvarkant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log 9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui.

Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa veiksniu argumente. Skaičius n gali būti visiškai bet koks, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip jis vadinasi:.

Tiesą sakant, kas atsitiks, jei skaičius b padidintas iki tokios laipsnio, kad skaičius b iki šios laipsnio duotų skaičių a? Teisingai: rezultatas yra tas pats skaičius a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad log 25 64 = log 5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgdami į galių dauginimo su ta pačia baze taisykles, gauname:

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemose ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. log a a = 1 yra. Vieną kartą ir visiems laikams atsiminkite: logaritmas bet kuriam tos bazės pagrindui a yra lygus vienetui.
  2. log a 1 = 0 yra. Bazė a gali būti bet kokia, bet jei argumente yra vienas, logaritmas lygus nuliui! Kadangi a 0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

pagrindinės savybės.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

identiškais pagrindais

Log6 4 + log6 9.

Dabar šiek tiek apsunkinkime užduotį.

Logaritmų sprendimo pavyzdžiai

Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x >

Užduotis. Raskite posakio prasmę:

Perėjimas prie naujo pagrindo

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Užduotis. Raskite posakio prasmę:

Taip pat žiūrėkite:


Pagrindinės logaritmo savybės

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Rodiklis yra 2,718281828…. Norėdami prisiminti eksponentą, galite išstudijuoti taisyklę: eksponentas yra lygus 2,7 ir du kartus už Levo Nikolajevičiaus Tolstojaus gimimo metus.

Pagrindinės logaritmų savybės

Žinodami šią taisyklę, žinosite ir tikslią eksponento vertę, ir Levo Tolstojaus gimimo datą.


Logaritmų pavyzdžiai

Logaritminės išraiškos

1 pavyzdys.
A). x=10ac^2 (a>0,c>0).

Naudodami savybes 3.5 apskaičiuojame

2.

3.

4. Kur .



2 pavyzdys. Raskite x jei


3 pavyzdys. Pateikiame logaritmų reikšmę

Apskaičiuokite log(x), jei




Pagrindinės logaritmų savybės

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tomis pačiomis bazėmis: logax ir logay. Tada juos galima pridėti ir atimti, ir:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis dalykas čia yra identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log2 48 − log2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log3 135 − log3 5.

Vėlgi, bazės yra tos pačios, todėl turime:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x > 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai , t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą. Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log7 496.

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log7 496 = 6 log7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslios galios: 16 = 24; 49 = 72. Turime:

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu.

Logaritminės formulės. Logaritmų sprendimų pavyzdžiai.

Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log2 7. Kadangi log2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Konkrečiai, jei nustatome c = x, gauname:

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti vietomis, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai randamos įprastose skaitinėse išraiškose. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log5 16 log2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Dabar „atsukkime“ antrąjį logaritmą:

Kadangi sandauga nesikeičia pertvarkant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa veiksniu argumente. Skaičius n gali būti visiškai bet koks, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip jis vadinasi:.

Tiesą sakant, kas atsitiks, jei skaičius b padidintas iki tokios laipsnio, kad skaičius b iki šios laipsnio duotų skaičių a? Teisingai: rezultatas yra tas pats skaičius a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad log25 64 = log5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgdami į galių dauginimo su ta pačia baze taisykles, gauname:

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemose ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. logaa = 1 yra. Vieną kartą ir visiems laikams atsiminkite: logaritmas bet kuriam tos bazės pagrindui a yra lygus vienetui.
  2. loga 1 = 0 yra. Bazė a gali būti bet kokia, bet jei argumente yra vienas, logaritmas lygus nuliui! Kadangi a0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

Taip pat žiūrėkite:

B logaritmas iki a pagrindo reiškia išraišką. Apskaičiuoti logaritmą reiškia rasti laipsnį x (), kai lygybė tenkinama

Pagrindinės logaritmo savybės

Būtina žinoti aukščiau pateiktas savybes, nes jų pagrindu išsprendžiamos beveik visos su logaritmais susijusios problemos ir pavyzdžiai. Likusias egzotines savybes galima gauti atliekant matematines manipuliacijas su šiomis formulėmis

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Skaičiuodami logaritmų sumos ir skirtumo formulę (3.4) susiduri gana dažnai. Likusieji yra šiek tiek sudėtingi, tačiau atliekant daugybę užduočių jie yra būtini norint supaprastinti sudėtingas išraiškas ir apskaičiuoti jų reikšmes.

Dažni logaritmų atvejai

Kai kurie įprasti logaritmai yra tie, kurių bazė yra net dešimt, eksponentinė arba dvi.
Logaritmas iki dešimties pagrindo paprastai vadinamas dešimtainiu logaritmu ir tiesiog žymimas lg(x).

Iš įrašo aišku, kad pagrindai įraše neparašyti. Pavyzdžiui

Natūralusis logaritmas yra logaritmas, kurio bazė yra eksponentas (žymimas ln(x)).

Rodiklis yra 2,718281828…. Norėdami prisiminti eksponentą, galite išstudijuoti taisyklę: eksponentas yra lygus 2,7 ir du kartus už Levo Nikolajevičiaus Tolstojaus gimimo metus. Žinodami šią taisyklę, žinosite ir tikslią eksponento vertę, ir Levo Tolstojaus gimimo datą.

Ir dar vienas svarbus logaritmas dviem pagrindams žymimas

Funkcijos logaritmo išvestinė lygi vienetui, padalytam iš kintamojo

Integralinis arba antiderivinis logaritmas nustatomas pagal ryšį

Pateiktos medžiagos pakanka, kad išspręstumėte plačią su logaritmais ir logaritmais susijusių problemų klasę. Kad padėčiau suprasti medžiagą, pateiksiu tik kelis įprastus pavyzdžius iš mokyklos programos ir universitetų.

Logaritmų pavyzdžiai

Logaritminės išraiškos

1 pavyzdys.
A). x=10ac^2 (a>0,c>0).

Naudodami savybes 3.5 apskaičiuojame

2.
Pagal logaritmų skirtumo savybę turime

3.
Naudodami savybes 3.5 randame

4. Kur .

Iš pažiūros sudėtinga išraiška supaprastinama, kad būtų suformuota naudojant daugybę taisyklių

Logaritmo reikšmių paieška

2 pavyzdys. Raskite x jei

Sprendimas. Skaičiavimui taikome paskutinio termino 5 ir 13 savybių

Įrašome tai ir gedime

Kadangi bazės yra lygios, išraiškas sulyginame

Logaritmai. Pirmas lygis.

Pateikiame logaritmų reikšmę

Apskaičiuokite log(x), jei

Sprendimas: Paimkime kintamojo logaritmą, kad užrašytume logaritmą per jo terminų sumą


Tai tik mūsų pažinties su logaritmais ir jų savybėmis pradžia. Praktikuokite skaičiavimus, praturtinkite savo praktinius įgūdžius – greitai jums prireiks įgytų žinių sprendžiant logaritmines lygtis. Išstudijavę pagrindinius tokių lygčių sprendimo būdus, jūsų žinias išplėsime į kitą ne mažiau svarbią temą - logaritmines nelygybes...

Pagrindinės logaritmų savybės

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tomis pačiomis bazėmis: logax ir logay. Tada juos galima pridėti ir atimti, ir:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis dalykas čia yra identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Užduotis. Raskite išraiškos reikšmę: log6 4 + log6 9.

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log2 48 − log2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log3 135 − log3 5.

Vėlgi, bazės yra tos pačios, todėl turime:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Dabar šiek tiek apsunkinkime užduotį. Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x > 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai , t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą.

Kaip išspręsti logaritmus

Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log7 496.

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log7 496 = 6 log7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslios galios: 16 = 24; 49 = 72. Turime:

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu. Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log2 7. Kadangi log2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Konkrečiai, jei nustatome c = x, gauname:

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti vietomis, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai randamos įprastose skaitinėse išraiškose. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log5 16 log2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Dabar „atsukkime“ antrąjį logaritmą:

Kadangi sandauga nesikeičia pertvarkant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa veiksniu argumente. Skaičius n gali būti visiškai bet koks, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip jis vadinasi:.

Tiesą sakant, kas atsitiks, jei skaičius b padidintas iki tokios laipsnio, kad skaičius b iki šios laipsnio duotų skaičių a? Teisingai: rezultatas yra tas pats skaičius a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad log25 64 = log5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgdami į galių dauginimo su ta pačia baze taisykles, gauname:

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemose ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. logaa = 1 yra. Vieną kartą ir visiems laikams atsiminkite: logaritmas bet kuriam tos bazės pagrindui a yra lygus vienetui.
  2. loga 1 = 0 yra. Bazė a gali būti bet kokia, bet jei argumente yra vienas, logaritmas lygus nuliui! Kadangi a0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.