Развитие зародыша. Развитие зародыша человека Эпидемиологические и демографические данные

Изучение развития человеческого организма от момента образования одноклеточной зиготы, или оплодотворенной яйцеклетки, до рождения ребенка. Эмбриональное (внутриутробное) развитие человека длится примерно 265–270 дней. В течение этого времени из исходной одной клетки образуется более 200 миллионов клеток, а размеры эмбриона увеличивается от микроскопического до полуметрового.
В целом развитие человеческого эмбриона можно разделить на три стадии. Первая – это период от оплодотворения яйцеклетки до конца второй недели внутриутробной жизни, когда развивающийся эмбрион (зародыш) внедряется в стенку матки и начинает получать питание от матери. Вторая стадия длится с третьей до конца восьмой недели. В течение этого времени формируются все основные органы и эмбрион приобретает черты человеческого организма. По окончании второй стадии развития он уже называется плодом. Протяженность третьей стадии, называемой иногда фетальной (от лат. fetus – плод), – от третьего месяца до рождения. На этой заключительной стадии завершается специализация систем органов и плод постепенно приобретает способность существовать самостоятельно.

ПОЛОВЫЕ КЛЕТКИ И ОПЛОДОТВОРЕНИЕ

У человека зрелая половая клетка (гамета) – это сперматозоид у мужчины, яйцеклетка (яйцо) у женщины. Перед слиянием гамет с образованием зиготы эти половые клетки должны сформироваться, созреть и затем встретиться.

Половые клетки человека по структуре сходны с гаметами большинства животных. Принципиальное отличие гамет от остальных клеток организма, называемых соматическими, заключается в том, что гамета содержит только половину от числа хромосом соматической клетки. В половых клетках человека их 23. В процессе оплодотворения каждая половая клетка привносит в зиготу свои 23 хромосомы, и таким образом зигота имеет 46 хромосом, т. е. двойной их набор, как это присуще всем соматическим клеткам человека. См. также КЛЕТКА.

Будучи сходны по главным структурным признакам с соматическими клетками, сперматозоид и яйцеклетка в то же время высоко специализированы для своей роли в репродукции. Сперматозоид – небольшая и очень подвижная клетка (см. СПЕРМАТОЗОИД). Яйцеклетка, напротив, неподвижна и гораздо крупнее (почти в 100 000 раз), чем сперматозоид. Бóльшую часть ее объема составляет цитоплазма, содержащая запасы питательных веществ, необходимые эмбриону в начальный период развития (см. ЯЙЦО).

Для оплодотворения необходимо, чтобы яйцеклетка и сперматозоид достигли стадии зрелости. Более того, яйцеклетка должна быть оплодотворена в течение 12 часов после выхода из яичника, в противном случае она погибает. Человеческий сперматозоид живет дольше, около суток. Быстро двигаясь с помощью своего кнутообразного хвоста, сперматозоид достигает соединенного с маткой протока – маточной (фаллопиевой) трубы, куда попадает из яичника и яйцеклетка. Обычно это занимает менее часа после совокупления. Считается, что оплодотворение происходит в верхней трети маточной трубы.

Несмотря на то, что в норме эякулят содержит миллионы сперматозоидов, только один проникает в яйцеклетку, активируя цепочку процессов, приводящих к развитию эмбриона. В силу того, что сперматозоид весь целиком проникает в яйцеклетку, мужчина привносит потомку, помимо ядерного, и некоторое количество цитоплазматического материала, в том числе центросому – небольшую структуру, необходимую для клеточного деления зиготы. Сперматозоид определяет и пол потомка. Кульминацией оплодотворения считается момент слияния ядра сперматозоида с ядром яйцеклетки.

ДРОБЛЕНИЕ И ИМПЛАНТАЦИЯ

После оплодотворения зигота постепенно спускается по маточной трубе в полость матки. В этот период, в течение примерно трех дней, зигота проходит стадию клеточного деления, известную как дробление. При дроблении число клеток увеличивается, но общий их объем не меняется, так как каждая дочерняя клетка мельче, чем исходная. Первое дробление происходит примерно через 30 часов после оплодотворения и дает две совершенно одинаковые дочерние клетки. Второе дробление наступает через 10 часов после первого и приводит к образованию четырехклеточной стадии. Примерно через 50–60 часов после оплодотворения достигается стадия т. н. морулы – шара из 16 и более клеток.

По мере продолжения дробления наружные клетки морулы делятся быстрее, чем внутренние, в результате наружный клеточный слой (трофобласт) отделяется от внутреннего скопления клеток (т. н. внутренней клеточной массы), сохраняя с ними связь только в одном месте. Между слоями образуется полость, бластоцель, которая постепенно заполняется жидкостью. На этой стадии, наступающей через три–четыре дня после оплодотворения, дробление заканчивается и эмбрион называют бластоцистой, или бластулой. В течение первых дней развития, эмбрион получает питание и кислород из секрета (выделений) маточной трубы.

Примерно через пять–шесть дней после оплодотворения, когда бластула находится уже в матке, трофобласт образует пальцевидные ворсинки, которые, энергично двигаясь, начинают внедряться в ткань матки. В то же время, по-видимому, бластула стимулирует выработку ферментов, способствующих частичному перевариванию слизистой (эндометрия) матки. Примерно на 9–10 день эмбрион имплантируется (врастает) в стенку матки и оказывается полностью окруженным ее клетками; с имплантацией эмбриона прекращается менструальный цикл.

В дополнение к своей роли в имплантации, трофобласт участвует также в образовании хориона – первичной мембраны, окружающей эмбрион. В свою очередь хорион содействует образованию плаценты, губчатой по структуре мембраны, через которую эмбрион в дальнейшем получает питание и выводит продукты обмена.

ЭМБРИОНАЛЬНЫЕ ЗАРОДЫШЕВЫЕ ЛИСТКИ

Эмбрион развивается из внутренней клеточной массы бластулы. По мере увеличения давления жидкости внутри бластоцеля клетки внутренней клеточной массы, которая становится компактной, формируют зародышевый щиток, или бластодерму. Зародышевый щиток разделяется на два слоя. Один из них становится источником трех первичных зародышевых листков: эктодермы, энтодермы и мезодермы. Процесс обособления сначала двух, а затем и третьего зародышевого листка (т. н. гаструляция) знаменует превращение бластулы в гаструлу.

Зародышевые листки вначале различаются лишь по расположению: эктодерма – самый наружный слой, энтодерма – внутренний, а мезодерма – промежуточный. Формирование трех зародышевых листков завершается примерно через неделю после оплодотворения.

Постепенно, шаг за шагом, каждый зародышевый листок дает начало определенным тканям и органам. Так, эктодерма формирует наружный слой кожи и ее производные (придатки) – волосы, ногти, кожные железы, выстилку ротовой полости, носа и заднего прохода, – а также всю нервную систему и рецепторы органов чувств, например сетчатку глаза. Из энтодермы образуются: легкие; выстилка (слизистая оболочка) всего пищеварительного тракта, кроме рта и заднего прохода; некоторые примыкающие к этому тракту органы и железы, такие, как печень, поджелудочная железа, тимус, щитовидная и паращитовидные железы; выстилка мочевого пузыря и мочеиспускательного канала. Мезодерма – источник системы кровообращения, выделительной, половой, кроветворной и иммунной систем, а также мышечной ткани, всех типов опорно-трофических тканей (скелетной, хрящевой, рыхлой соединительной и т. д.) и внутренних слоев кожи (дермы). Полностью развившиеся органы обычно состоят из нескольких типов тканей и поэтому связаны своим происхождением с разными зародышевыми листками. По этой причине проследить участие того или иного зародышевого листка можно только в процессе формирования ткани.

ВНЕЗАРОДЫШЕВЫЕ ОБОЛОЧКИ

Развитие эмбриона сопровождается образованием нескольких оболочек, окружающих его и отторгаемых при рождении. Самая наружная из них – уже упоминавшийся хорион, производное трофобласта. Он соединен с эмбрионом с помощью телесного стебелька из соединительной ткани, происходящей из мезодермы. Со временем стебелек удлиняется и образует пупочный канатик (пуповину), соединяющий эмбрион с плацентой.

Плацента развивается как специализированный вырост плодных оболочек. Ворсинки хориона прободают эндотелий кровеносных сосудов слизистой оболочки матки и погружаются в кровяные лакуны, заполненные кровью матери. Таким образом, кровь плода отделена от крови матери лишь тонкой наружной оболочкой хориона и стенками капилляров самого зародыша, т. е. непосредственного смешения крови матери и плода не происходит. Через плаценту диффундируют питательные вещества, кислород и продукты обмена веществ. При рождении плацента отбрасывается как послед и ее функции переходят к пищеварительной системе, легким и почкам.

Внутри хориона зародыш помещается в мешке, называемом амнионом, который формируется из эмбриональной эктодермы и мезодермы. Амниотический мешок наполнен жидкостью, увлажняющей зародыш, защищающей его от толчков и удерживающей в состоянии, близком к невесомости.

Другая дополнительная оболочка – аллантоис, производное энтодермы и мезодермы. Это место хранения продуктов выделения; он соединяется с хорионом в телесном стебельке и способствует дыханию эмбриона.

У эмбриона существует еще одна временная структура – т. н. желточный мешок. В течении какого-то времени желточный мешок снабжает эмбрион питательными веществами путем диффузии из материнских тканей; позднее здесь формируются родоначальные (стволовые) клетки крови. Желточный мешок является первичным очагом кроветворения у эмбриона; впоследствии эта функция переходит сначала к печени, а затем к костному мозгу.

РАЗВИТИЕ ЭМБРИОНА

Во время образования внезародышевых оболочек органы и системы эмбриона продолжают развиваться. В определенные моменты одна часть клеток зародышевых листков начинает делиться быстрее, чем другая, группы клеток мигрируют, а клеточные слои изменяют свою пространственную конфигурацию и местоположение в эмбрионе. В отдельные периоды рост некоторых типов клеток очень активен и они увеличиваются в размерах, в то время как другие растут медленно или вовсе перестают расти.

Первой после имплантации развивается нервная система. В течение второй недели развития эктодермальные клетки задней стороны зародышевого щитка быстро увеличиваются в числе, вызывая формирование выпуклости над щитком – первичной полоски. Затем на ней образуется желобок, в передней части которого возникает небольшая ямка. Спереди от этой ямки клетки быстро делятся и образуют головной отросток, предшественник т. н. спинной струны, или хорды. По мере удлинения хорда образует у зародыша ось, обеспечивающую основу симметричной структуры человеческого тела. Выше хорды расположена нервная пластинка, из которой образуется центральная нервная система. Примерно на 18-й день мезодерма по краям хорды начинает формировать спинные сегменты (сомиты), парные образования, из которых развиваются глубокие слои кожи, скелетные мышцы и позвонки.

После трех недель развития средняя длина эмбриона лишь немного больше 2 мм от темени до хвоста. Тем не менее уже присутствуют зачатки хорды и нервной системы, а также глаз и ушей. Уже есть сердце S-образной формы, пульсирующее и прокачивающее кровь.

После четвертой недели длина эмбриона равна примерно 5 мм, тело имеет С-образную форму. Сердце, составляющее самую большую выпуклость на внутренней стороне изгиба тела, начинает подразделяться на камеры. Формируются три первичные области мозга (мозговые пузыри), а также зрительный, слуховой и обонятельный нервы. Образуется пищеварительная система, включая желудок, печень, поджелудочную железу и кишечник. Начинается структурирование спинного мозга, можно рассмотреть маленькие парные зачатки конечностей.

Четырехнедельный человеческий эмбрион уже имеет жаберные дуги, которые напоминают жаберные дуги зародыша рыбы. Они скоро исчезают, но их временное появление – один из примеров сходства строения человеческого зародыша с другими организмами (см. также ЭМБРИОЛОГИЯ).

В возрасте пяти недель у эмбриона есть хвост, а формирующиеся руки и ноги напоминают культи. Начинают развиваться мышцы и центры окостенения. Голова представляет собой самую крупную часть: головной мозг представлен уже пятью мозговыми пузырями (полостями с жидкостью); имеются также выпуклые глаза с хрусталиками и пигментированной сетчаткой.

В период от пятой до восьмой недели завершается собственно эмбриональный период внутриутробного развития. В течение этого времени эмбрион вырастает от 5 мм до примерно 30 мм и начинает напоминать человека. Его внешность изменяется следующим образом: 1) уменьшается изгиб спины, хвост становится менее заметным, частично из-за уменьшения, частично потому, что скрывается развивающимися ягодицами; 2) голова выпрямляется, на развивающемся лице появляются внешние части глаз, ушей и носа; 3) руки отличаются от ног, уже можно увидеть пальцы рук и ног; 4) пуповина вполне определена, площадь ее прикрепления на животе зародыша становится меньше; 5) в области живота сильно разрастается печень, становясь столь же выпуклой, как и сердце, и оба эти органа формируют бугристый профиль средней части тела вплоть до восьмой недели; в это же время в полости живота становится заметен кишечник, который делает живот более округлым; 6) шея становится более узнаваемой в основном за счет того, что сердце опускается ниже, а также из-за исчезновения жаберных дуг; 7) появляются наружные половые органы, хотя еще не полностью приобретшие окончательный вид.

К концу восьмой недели почти все внутренние органы хорошо сформированы, а нервы и мышцы настолько развиты, что эмбрион может производить спонтанные движения. С этого времени и до родов основные изменения плода связаны с ростом и дальнейшей специализацией.

ЗАВЕРШЕНИЕ РАЗВИТИЯ ПЛОДА

В течение последних семи месяцев развития вес плода увеличивается с 1 г до примерно 3,5 кг, а длина – с 30 мм до примерно 51 см. Величина ребенка на момент родов может значительно варьировать в зависимости от наследственности, питания и здоровья.

В ходе развития плода сильно изменяются не только его размеры и вес, но и пропорции тела. Например, у двухмесячного плода голова составляет почти половину длины тела. В оставшиеся месяцы она продолжает расти, но медленнее, так что к моменту рождения составляет только четверть длины тела. Шея и конечности становятся длиннее, при этом ноги растут быстрее, чем руки. Другие внешние изменения связаны с развитием наружных половых органов, ростом волос на теле и ногтей; кожа становится более гладкой из-за отложения подкожного жира.

Одно из наиболее значительных внутренних изменений связано с заменой хряща костными клетками в процессе становления зрелого скелета. Отростки многих нервных клеток покрываются миелином (белково-липидным комплексом). Процесс миелинизации вместе с формированием связей между нервами и мышцами приводит к увеличению подвижности плода в матке. Эти движения хорошо ощущаются матерью примерно после четвертого месяца. После шестого месяца плод поворачивается в матке таким образом, что его голова оказывается внизу и упирается в шейку матки.

К седьмому месяцу плод полностью покрывается первородной смазкой, белесоватой жирной массой, которая сходит после родов. Преждевременно родившемуся в этот период ребенок выжить труднее. Как правило, чем ближе роды к нормальному сроку, тем больше шансов у ребенка выжить, поскольку в последние недели беременности плод получает временную защиту от некоторых заболеваний за счет антител, поступающих из крови матери. Хотя роды отмечают конец внутриутробного периода, биологическое развитие человека продолжается в детском и подростковом периоде.

ПОВРЕЖДАЮЩИЕ ВОЗДЕЙСТВИЯ НА ПЛОД

Врожденные пороки могут быть следствием разнообразных причин, таких, как болезнь, генетические отклонения и многочисленные вредные вещества, влияющие на плод и организм матери. Дети с врожденными пороками могут на всю жизнь остаться инвалидами из-за физической или умственной неполноценности. Рост знаний об уязвимости плода, особенно в первые три месяца, когда формируются его органы, привел в настоящее время к повышенному вниманию к дородовому периоду.

Болезни. Одна из наиболее частых причин врожденных пороков –вирусное заболевание краснуха. Если мать заболевает краснухой в первые три месяца беременности, это может привести к непоправимым аномалиям развития плода. Маленьким детям иногда делают прививку против краснухи, чтобы уменьшить вероятность заболевания контактирующих с ними беременных женщин. См. также КРАСНУХА.

Потенциально опасны и венерические болезни. Сифилис может передаваться от матери плоду, следствием чего бывают выкидыши и рождение мертвого ребенка. Обнаруженный сифилис нужно незамедлительно лечить антибиотиками, что важно для здоровья матери и ее будущего ребенка.

Эритробластоз плода может стать причиной рождения мертвого ребенка либо тяжелой анемии новорожденного с развитием умственной отсталости. Заболевание возникает в случаях резус-несовместимости крови матери и плода (обычно при повторной беременности резус-положительным плодом). См. также КРОВЬ.

Еще одним наследственным заболеванием является муковисцидоз, причина которого – генетически обусловленное нарушение обмена веществ, сказывающееся прежде всего на функции всех экзокринных желез (слизистых, потовых, слюнных, поджелудочной железы и других): они начинают вырабатывать чрезвычайно вязкую слизь, которая может закупоривать как протоки самих желез, препятствуя выделению ими секрета, так и мелкие бронхи; последнее приводит к тяжелому поражению бронхолегочной системы с развитием в конечном итоге дыхательной недостаточности. У части больных нарушается преимущественно деятельность пищеварительной системы. Болезнь обнаруживается вскоре после рождения и иногда вызывает кишечную непроходимость у новорожденного в первый же день жизни. Некоторые проявления этого заболевания поддаются лекарственной терапии. Наследственным заболеванием является и галактоземия, обусловленная отсутствием фермента, необходимого для метаболизма галактозы (продукта переваривания молочного сахара) и приводящая к образованию катаракты и повреждениям мозга и печени. До недавнего времени галактоземия была частой причиной детской смертности, но сейчас разработаны методы ранней диагностики и лечения посредством специальной диеты. Синдром Дауна (см. ДАУНА СИНДРОМ), как правило, обусловлен наличием в клетках лишней хромосомы. Человек с этим заболеванием обычно низкого роста, со слегка раскосыми глазами и сниженными умственными способностями. Вероятность синдрома Дауна у ребенка растет с увеличением возраста матери. Фенилкетонурия – заболевание, вызываемое отсутствием фермента, необходимого для метаболизма определенной аминокислоты. Оно тоже может быть причиной умственной отсталости (см. ФЕНИЛКЕТОНУРИЯ).

Некоторые врожденные пороки удается частично или полностью исправить хирургическим путем. В их число входят родимые пятна, косолапость, пороки сердца, лишние или сросшиеся пальцы на руках и ногах, аномалии в строении наружных половых органов и мочеполовой системы, расщепление позвоночника, «заячья» губа и «волчья пасть». К порокам относятся также пилорический стеноз, т. е. сужение перехода от желудка к тонкому кишечнику, отсутствие заднепроходного отверстия и гидроцефалия – состояние, при котором в черепе накапливается избыток жидкости, приводящий к увеличению размеров и деформации головы и умственной отсталости (см. также ВРОЖДЕННЫЕ ПОРОКИ).

Лекарственные средства и наркотики. Накоплены данные – многие в результате трагического опыта, – что некоторые лекарственные средства могут быть причиной отклонений в развитии плода. Наиболее известное из них – успокаивающее средство талидомид, которое вызывало недоразвитие конечностей у многих детей, чьи матери принимали это лекарство во время беременности. В настоящее время большинство врачей признает, что лекарственное лечение беременных должно быть сведено к минимуму, особенно в первые три месяца, когда происходит формирование органов. Использование беременной женщиной каких-либо лекарств в виде таблеток и капсул, а также гормонов и даже аэрозолей для ингаляций допустимо только под строгим контролем гинеколога.

Потребление больших количеств алкоголя беременной женщиной увеличивает риск развития у ребенка многих отклонений, называемых в совокупности алкогольным синдромом плода и включающих задержку роста, умственную отсталость, аномалии сердечно-сосудистой системы, маленькую голову (микроцефалия), слабый мышечный тонус.

Наблюдения показали, что употребление кокаина беременными приводит к серьезным нарушениям у плода. Потенциально опасны и другие наркотики типа марихуаны, гашиша и мескалина. Была обнаружена связь между употреблением беременными женщинами галлюциногенного средства ЛСД и частотой спонтанных выкидышей. Согласно экспериментальным данным, ЛСД способен вызывать нарушения структуры хромосом, что указывает на возможность генетических повреждений у еще не родившегося ребенка (см. ЛСД).

Неблагоприятное действие на плод оказывает и курение будущих матерей. Исследования показали, что пропорционально числу выкуриваемых сигарет учащаются случаи преждевременных родов и недоразвития плода. Возможно, курение повышает и частоту выкидышей, рождения мертвых детей, а также детскую смертность непосредственно после родов.

Радиация. Врачи и ученые все чаще указывают на опасность, связанную с непрерывным ростом числа источников радиации, которая способна вызывать повреждения генетического аппарата клеток. На ранних стадиях беременности женщины не должны без необходимости подвергаться воздействию рентгеновского излучения и других форм радиации. В более широком смысле строгий контроль медицинских, промышленных и военных источников радиации жизненно необходим для сохранения генетического здоровья будущих поколений. См. также РАЗМНОЖЕНИЕ; РЕПРОДУКЦИЯ ЧЕЛОВЕКА; ЭМБРИОЛОГИ

Http://www.krugosvet.ru/enc/medicina/EMBRIOLOGIYA_CHELOVEKA.html

Организм человека является сложной системой, деятельность которой регулируется на различных уровнях. При этом определенные вещества должны участвовать в конкретных биохимических процессах, чтобы все клетки, органы и целые системы могли правильно функционировать. А для этого требуется заложить правильное основание. Подобно тому, как многоэтажный дом не выстоит без соответствующим образом подготовленного фундамента, «здание» человеческого тела требует корректной передачи наследственного материала. Именно заложенный в нем генетический код управляет развитием зародыша, позволяет сформироваться всем взаимодействиям и обуславливает нормальное существование человека.

Однако в некоторых случаях в наследственной информации появляются ошибки. Они могут возникать на уровне отдельных генов или же касаться их крупных объединений. Подобные изменения называются генными мутациями. В отдельных ситуациях проблема относится к целым хромосомам, то есть к структурным единицам клетки. Соответственно, их называют хромосомными мутациями. Наследственные болезни, развивающиеся вследствие нарушений хромосомного набора или строения хромосом, получили название хромосомных.

В норме каждая клетка организма содержит одно и то же количество хромосом, объединенных в пары с одинаковыми генами. У человека полный набор состоит из 23 пар, и только в половых клетках вместо 46 хромосом находится половинное число. Это необходимо для того, чтобы в процессе оплодотворения при слиянии сперматозоида и яйцеклетки получилась полноценная комбинация со всеми необходимыми генами. Гены распределены по хромосомам не случайно, а в строго определенном порядке. При этом линейная последовательность сохраняется одинаковой для всех людей.

Однако в процессе образования половых клеток могут произойти различные «ошибки». В результате мутаций изменяется количество хромосом или их структура. По этой причине после оплодотворения в яйцеклетке может оказаться избыточное или, напротив, недостаточное количество хромосомного материала. Из-за дисбаланса процесс развития зародыша нарушается, что может привести к самопроизвольному прерыванию беременности, рождению мертвого ребенка либо развитию наследственного хромосомного заболевания.

Этиология хромосомных заболеваний

К этиологическим факторам хромосомных патологий относятся все разновидности хромосомных мутаций. Кроме того, некоторые геномные мутации также способны оказывать подобное действие.

У человека встречаются делеции, дупликации, транслокации и инверсии, то есть все типы мутаций. При делеции и дупликации генетическая информация оказывается в недостаточном и избыточном количестве соответственно. Поскольку современными методами можно выявить отсутствие даже небольшой части генетического материала (на уровне гена), то провести четкую границу между генными и хромосомными заболеваниями практически невозможно.

Транслокации представляют собой обмен генетическим материалом, который происходит между отдельными хромосомами. Иными словами, происходит перемещение участка генетической последовательности на негомологичную хромосому. Среди транслокаций выделяют две важные группы – реципрокные и Робертсоновские.

Транслокации реципрокного характера без потери задействованных участков называются сбалансированными. Они, как и инверсии, не вызывают потери генной информации, поэтому не приводят к паталогическим эффектам. Тем не менее, при дальнейшем участии таких хромосом в процессе кроссинговера и редукции могут образовываться гаметы с несбалансированными наборами, обладающие недостаточным набором генов. Их участие в процессе оплодотворения приводит к тому, что у потомства развиваются те или иные наследственные синдромы.

Для Робертсоновских транслокаций характерно участие двух акроцентрических хромосом. В ходе процесса короткие плечи утрачиваются, а длинные сохраняются. Из 2 исходных хромосом формируется одна цельная, метацентрическая. Несмотря на потерю части генетического материала развития патологий в таком случае обычно не происходит, поскольку функции утраченных участков компенсируются аналогичными генами в остальных 8 акроцентрических хромосомах.

При концевых делециях (то есть при их утрате) может сформироваться кольцевая хромосома. У ее носителя, получившего такой генный материал от одного из родителей, отмечают частичную моносомию по концевым участкам. При разрыве через центромеру может сформироваться изохромосома, имеющая одинаковые по набору генов плечи (у обычной хромосомы они отличаются).

В некоторых случаях может развиваться однородительская дисомия. Она возникает, если при нерасхождении хромосом и оплодотворении возникнет трисомия, а после этого одна из трех хромосом будет удалена. Механизм этого явления в настоящее время не изучен. Однако в результате в хромосомном наборе появится две копии хромосомы одного родителя, в то время как часть генной информации от второго родителя будет утеряна.

Многообразие вариантов искажения хромосомного набора обуславливает различные формы заболеваний.

Имеется три базовых принципа, которые позволяют точно классифицировать возникшую хромосомную патологию. Их соблюдение обеспечивает однозначное указание на форму отклонения.

Согласно первому принципу необходимо определить характеристику мутации, генной или хромосомной, причем требуется также четко указать конкретную хромосому. К примеру, это может быть простая трисомия по 21 хромосоме или триплоидия. Сочетание индивидуальной хромосомы и типа мутации определяет формы хромосомной патологии. Благодаря соблюдению этого принципа можно точно установить, в какой структурной единице имеются изменения, а также выяснить, зафиксирован избыток или недостаток хромосомного материала. Такой подход более эффективен, чем классификация по клиническим признакам, поскольку многие отклонения вызывают сходные нарушения развития организма.

Согласно второму принципу нужно определить тип клеток, в котором произошла мутация – зигота или гамета. Мутации в гаметах приводят к появлению полных форм хромосомного заболевания. В каждой клетке организма будет содержаться копия генетического материала с хромосомной аномалией. Если же нарушение происходит позднее, на этапе зиготы или во время дробления, то мутация классифицируется как соматическая. В этом случае часть клеток получает изначальный генетический материал, а часть – с измененным хромосомным набором. Одновременно в организме может присутствовать два и более типа наборов. Их сочетание напоминает мозаику, поэтому такая форма болезни называется мозаичной. Если в организме присутствует более 10% клеток с измененным хромосомным набором, клиническая картина повторяет полную форму.

Согласно третьему принципу выявляется поколение, в котором мутация появилась первый раз. Если изменение было отмечено в гаметах здоровых родителей, то говорят о спорадическом случае. Если же оно уже имелось в материнском или отцовском организме, то речь идет о наследуемой форме. Значительная часть унаследованных хромосомных заболеваний вызывается робертсоновскими транслокациями, инверсиями и сбалансированными реципрокными транслокациями. В процессе мейоза они могут привести к образованию патологической комбинации.

Полная точная диагностика подразумевает, что установлены тип мутации, затронутая хромосома, выяснен полный или мозаичный характер заболевания, а также установлена передача по наследству или спорадическое возникновение. Получить необходимые для этого данные можно при проведении генетической диагностики с использованием проб пациента, а в некоторых случаях и его родственников.

Общие вопросы

Интенсивное развитие генетики в течение последних десятилетий позволило развить отдельное направление хромосомной патологии, которая постепенно приобретает все большое значение. К этой области относятся не только хромосомные болезни, но и различные нарушения во время внутриутробного развития (к примеру, выкидыши). В настоящее время счет аномалий идет уже на 1000. Свыше ста форм характеризуются клинически очерченной картиной и называются синдромами.

Выделяется несколько групп болезней. Триплоидией называется случай, при котором в клетках организма имеется лишняя копия генома. Если же появился дубликат только одной хромосомы, то подобное заболевание называется трисомией. Также причинами аномального развития организма могут быть делеции (удаленные участки генетического кода), дупликации (соответственно, лишние копии генов или их групп) и иные дефекты. Английский врач Л. Даун в 1866 году описал одну из самых известных болезней такого рода. Синдром, получивший его имя, развивается при наличии лишней копии 21 хромосомы (трисомия-21). Трисомии по другим хромосомам, как правило, заканчиваются выкидышами или приводят к смерти в детском возрасте из-за серьезных нарушений в развитии.

Позже были открыты случаи моносомии по X-хромосоме. В 1925 году Шерешевский Н.А и в 1938 году Тернер Г. описали его симптомы. Трисомия-XXY, которая встречается у мужчин, была описана Клайнфельтером в 1942 году.

Указанные случаи заболеваний стали первыми объектами исследований в этой области. После того, как расшифровали этиологию трех перечисленных синдромов, фактически появилось направление хромосомных болезней. В течение 60-х годов дальнейшие цитогенетические исследования привели к формированию клинической цитогенетики. Ученые доказали связь между патологическими отклонениями и хромосомными мутациями, а также получили статистические данные о частоте появления мутаций у новорожденных и в случаях самопроизвольного прерывания беременности.

Типы хромосомных аномалий

Хромосомные аномалии могут быть как относительно крупными, так и небольшими. В зависимости от их размеров меняются методы исследования. К примеру, для точечных мутаций, делеций и дупликаций, касающихся участков длиной в сотню нуклеотидов, обнаружение при помощи микроскопа невозможно. Определить хромосомное нарушение при помощи метода дифференциального окрашивания возможно только в том случае, если величина затронутого участка исчисляется в миллионах нуклеотидов. Небольшие мутации можно выявить лишь при помощи установления нуклеотидной последовательности. Как правило, большие по размерам нарушения (к примеру, видимые в микроскоп) приводят к более выраженному воздействию на функционирование организма. Кроме того, аномалия может затрагивать не только ген, но и участок наследственного материала, функции которого в настоящее время не исследованы.

Моносомией называется аномалия, выражающаяся в отсутствии одной из хромосом. Обратным случаем является трисомия – добавление лишней копии хромосомы к стандартному набору из 23 пар. Соответственно, меняется и число копий генов, которые в норме присутствуют в двух экземплярах. При моносомии отмечается нехватка гена, при трисомии – его избыток. Если хромосомная аномалия приводит к изменению числа отдельных участков, то говорят о частичной трисомии или моносомии (к примеру, по плечу 13q).

Известны также случаи однородительской дисомии. При этом пара гомологичных хромосом (либо одна и часть гомологичной ей) попадает в организм от одного из родителей. Причиной является неизученный механизм, предположительно состоящий из двух фаз – образование трисомии и удаление одной из трех хромосом. Воздействие однородительской дисомии может быть как незначительным, там и заметным. Дело в том, что если в одинаковых хромосомах имеется рецессивный мутантный аллель, то он автоматически проявляется. В то же время родитель, от которого была получена хромосома с мутацией, из-за гетерозиготности по гену может не иметь проблем со здоровьем.

Из-за высокой важности генетического материала для всех этапов развития организма даже небольшие аномалии могут вызвать серьезные изменения в скоординированной деятельности генов. Ведь их совместная работа шлифовалась в течение миллионов лет эволюции. Неудивительно, что последствия от возникновения такой мутации, скорее всего, начинают проявляться уже на уровне гамет. Особенно сильно они влияют на мужчин, поскольку зародыш в определенный момент должен перейти с женского пути развития на мужской. Если же активности соответствующих генов недостаточно, возникают различные отклонения, вплоть до гермафродитизма.


Первые исследования эффектов от хромосомных нарушений стали проводить в 60-х годах, после того как был установлен хромосомный характер некоторых заболеваний. Можно условно выделить две большие группы связанных эффектов: врожденные пороки развития и изменения, вызывающие летальные исходы. Современная наука располагает сведениями, что хромосомные аномалии начинают проявляться уже на стадии зиготы. Летальные эффекты при этом являются одной из основных причин гибели плода в утробе (этот показатель у человека достаточно высок).

Хромосомные аберрации – это изменение структуры хромосомного материала. Они могут как возникать спорадически, так и передаваться по наследству. Точная причина, по которой они появляются, не установлена. Ученые полагают, что за некоторую часть таких мутаций отвечают различные факторы окружающей среды (например, химически активные вещества), которые воздействуют на эмбрион или даже на зиготу. Интересен тот факт, что большая часть хромосомных аберраций обычно связана с хромосомами, которые зародыш получает от отца.

Значительная часть хромосомных аберраций встречается очень редко и была обнаружена один раз. В то же время некоторые другие достаточно часто встречаются, причем даже у людей, не связанных родственными узами. К примеру, широко распространена транслокация центромерных или близких к ним районов 13 и 14 хромосом. Утрата неактивного хроматина коротких плеч практически не влияет на состояние здоровья. При аналогичных робертсоновских транслокациях в кариотип попадает 45 хромосом.

Примерно две трети всех обнаруживаемых у новорожденных хромосомных аномалий компенсируются за счет других копий генов. По этой причине они не несут серьезной угрозы нормальному развитию ребенка. Если же компенсация нарушения невозможна, возникают пороки развития. Часто такая несбалансированная аномалия выявляется у больных с умственной отсталостью и другими врожденными пороками, а также у плода после самопроизвольных абортов.

Известны компенсированные аномалии, которые способны наследоваться из поколения в поколение без возникновения заболеваний. В некоторых случаях такая аномалия может перейти в несбалансированную форму. Так, если имеется транслокация, затрагивающая 21 хромосому, возрастает риск трисомии по ней. По статистике такие транслокации имеются у каждого 20 ребенка, у которого зафиксирована трисомия-21, причем в каждом пятом случае аналогичное нарушение есть у одного из родителей. Поскольку большая часть детей с вызванной транслокацией трисомией-21 рождается у молодых (менее 30 лет) мам, то в случае обнаружения этого заболевания у ребенка необходимо произвести диагностическое обследование молодых родителей.

Риск появления нарушений, которые не компенсируются, сильно зависит от транслокации, поэтому теоретические расчеты затруднены. Тем не менее, приблизительно определить вероятность соответствующей патологии можно на основании статистических данных. Такая информация собрана для распространенных транслокаций. В частности, робертсоновская транслокация между 14 и 21 хромосомами у матери с вероятностью 2 процента приводит к трисомии-21 у ребенка. Эта же транслокация у отца передается по наследству с вероятностью 10%.

Распространенность хромосомных аномалий

Результаты исследований показывают, что как минимум десятая часть яйцеклеток после оплодотворения и около 5-6 процентов плодов имеют различные хромосомные аномалии. Как правило, на 8-11 неделе в таком случае происходит самопроизвольное прерывание беременности. В некоторых случаях они вызывают более поздние выкидыши или приводят к рождению мертвого ребенка.

У новорожденных (по результатам обследования более 65 тысяч детей) изменение числа хромосом либо значительные хромосомные аберрации встречаются примерно у 0,5% от общего количества. Как минимум каждый 700-й имеет трисомию по 13, 18 или 21 хромосоме; около 1 из 350 мальчиков имеют расширенный до 47 единиц набор хромосом (кариотипы 47,XYY и 47,XXY). Моносомия по X-хромосоме встречается реже – единичные случаи на несколько тысяч. Порядка 0,2% имеют компенсированные хромосомные аберрации.

У взрослых иногда также выявляются наследуемые отклонения (как правило, компенсированные), иногда с трисомией по половым хромосомам. Исследования также показывают, что примерно 10-15 процентов от общего числа случаев умственной отсталости могут быть объяснены наличием хромосомной аномалии. Этот показатель значительно возрастает, если вместе с нарушениями умственного развития наблюдаются анатомические дефекты. Бесплодие также часто вызывается лишней половой хромосомой (у мужчин) и моносомией/аберрацией по X хромосоме (у женщин).

Связь хромосомных аномалий и злокачественных образований

Как правило, исследование клеток злокачественных новообразований приводит к обнаружению видимых в микроскоп хромосомных аномалий. Сходные результаты дает проверка при лейкозе, лимфоме и ряде других заболеваний.

В частности, для лимфом нередким случаем является обнаружение транслокации, сопровождающейся разрывом внутри или рядом с локусом тяжелой цепи иммуноглобулина (14 хромосома). При этом ген MYC перемещается с 8 хромосомы на 14.

Для миелолейкоза в большинстве случаев (свыше 95%) фиксируется транслокация между 22 и 9 хромосомами, вызывающая появление характерной «филадельфийской» хромосомы.

Бластный криз в процессе развития сопровождается появлением в кариотипе последовательных хромосомных аномалий.

Методами дифференциального окрашивания с последующим наблюдением в микроскоп, а также при помощи молекулярно-генетических способов тестирования, можно своевременно выявлять хромосомные аномалии при различных лейкозах. Эта информация помогает сделать прогноз развития, по ней уточняется диагноз и корректируется терапия.

Для распространенных солидных опухолей, таких, как рак толстой кишки, рак молочной железы и т.д. обычные цитогенетические методы применимы с некоторыми ограничениям. Тем не менее, характерные для них хромосомные аномалии также были выявлены. Имеющиеся в опухолях отклонения часто связаны с генами, отвечающими за процесс нормального роста клеток. Из-за амплификации (образования множественных копий) гена иногда отмечается формирование мелких мини-хромосом в клетках новообразований.

В некоторых случаях появление злокачественного образования вызывает потеря гена, который должен обеспечивать подавление пролиферации. Причин может быть несколько: делеции и разрыв в процессе транслокации являются наиболее частыми. Мутации такого рода принято считать рецессивными, поскольку наличие даже одной нормальной аллели обычно обеспечивает достаточный контроль роста. Нарушения могут появляться или наследоваться. Если же в геноме отсутствует нормальная копия гена, то пролиферация перестает зависеть от регулирующих факторов.

Таким образом, наиболее значимыми хромосомными аномалиями, влияющими на возникновение и рост злокачественных новообразований, являются следующие типы:

Транслокации, поскольку они могут привести к нарушению нормального функционирования генов, отвечающих за пролиферацию (либо вызвать их усиленную работу);

Делеции, которые наряду с прочими рецессивными мутациями вызывают изменения в процессе регуляции роста клетки;

Рецессивные мутации, из-за рекомбинации становящиеся гомозиготными и оттого проявляющиеся в полной мере;

Амплификации, стимулирующие пролиферацию клеток опухоли.

Выявление указанных мутаций в ходе генетической диагностики может указывать на повышенный риск развития злокачественных новообразований.

Известные заболевания хромосомной природы

Одним из самых известных заболеваний, происходящих по причине наличия аномалий в генетическом материале, является синдром Дауна. Он обуславливается трисомией по 21 хромосоме. Характерным признаком этой болезни является отставание в развитии. Дети испытывают серьезные проблемы во время обучения в школе, часто им требуется альтернативная методика преподавания материала. Вместе с тем отмечаются нарушения физического развития – плоское лицо, увеличенные глаза, клинодактилия и другие. Если такие люди прикладывают значительные усилия, они могут достаточно хорошо социализироваться, известен даже случай успешного получения высшего образования мужчиной с синдромом Дауна. У больных повышен риск заболеть деменцией. Это и ряд других причин приводит к небольшой продолжительности жизни.

К трисомии относится и синдром Патау, только в этом случае имеется три копии 13 хромосомы. Для заболевания характерны множественные пороки развития, часто с полидактилией. В большинстве случаев отмечается нарушение деятельности центральной нервной системы либо ее неразвитость. Часто (примерно в 80 процентах) больные имеют пороки развития сердца. Тяжелые нарушения приводят к высокой смертности – в первый год жизни умирает до 95% детей с этим диагнозом. Заболевание не поддается лечению или коррекции, как правило, можно лишь обеспечить достаточно постоянный контроль состояния человека.

Еще одна форма трисомии, с которой рождаются дети, относится к 18 хромосоме. Заболевание в этом случае носит название синдрома Эдвардса и характеризуется множественными нарушениями. Деформируются кости, часто наблюдается измененная форма черепа. Сердечно-сосудистая система обычно с пороками развития, также проблемы отмечаются с органами дыхания. В результате около 60% детей не доживают до 3 месяцев, к 1 году умирает до 95% детей с этим диагнозом.

Трисомия по другим хромосомам у новорожденных практически не встречается, поскольку почти всегда приводит к преждевременному прерыванию беременности. В части случаев рождается мертвый ребенок.

С нарушениями числа половых хромосом связан синдром Шерешевского-Тернера. Из-за нарушений в процессе расхождения хромосом теряется X-хромосома в женском организме. В результате организм не получает должного количества гормонов, поэтому нарушается его развитие. В первую очередь это относится к половым органам, которые развиваются лишь отчасти. Практически всегда для женщины это обозначает невозможность иметь детей.

У мужчин полисомия по Y или X хромосоме приводит к развитию синдрома Клайнфельтера. Для этого заболевания характерна слабая выраженность мужских признаков. Зачастую сопровождается гинекомастией, возможно отставание в развитии. В большинстве случаев наблюдаются ранние проблемы с потенцией и бесплодие. В этом случае, как и для синдрома Шерешевского-Тернера, выходом может стать экстракорпоральное оплодотворение.

Благодаря методам пренатальной диагностики стало возможным выявление этих и других заболеваний у плода во время беременности. Семейные пары могут принять решение о прерывании беременности, чтобы попробовать зачать другого ребенка. Если же они принимают решение выносить и родить малыша, то знание особенностей его генетического материала позволяет заранее подготовиться к определенным методам профилактики или лечения.

Кариотип – систематизированный набор хромосом ядра клетки с его количественными и качественными характеристиками.

Нормальный женский кариотип - 46,XX Нормальный мужской кариотип - 46,XY

Исследование кариотипа - процедура, призванная выявить отклонения структуры строения и числа хромосом.

Показания для кариотипирования:

  • Множественные врожденные пороки развития, сопровождаемые клинически анормальным фенотипом или дизморфизмом
  • Умственная отсталость или отставание в развитии
  • Нарушение половой дифференцировки или аномалии полового развития
  • Первичная или вторичная аменорея
  • Аномалии спермограммы – азооспермия или тяжелая олигоспермия
  • Бесплодие неясной этиологии
  • Привычное невынашивание
  • Родители пациента со структурными хромосомными аномалиями
  • Повторное рождение детей с хромосомными аномалиями

К сожалению, с помощью исследования кариотипа можно определить лишь крупные структурные перестройки. В большинстве же случаев аномалии строения хромосом представляют собой микроделеции и микродупликации невидимые под микроскопом. Однако такие изменения хорошо идентифицируются современными молекулярными цитогенетическими методами - флуоресцентной гибридизацией (FISH) и хромосомным микроматричным анализом.

Аббревиатура FISH расшифровывается как fluorescent in situ hybridization – флуоресцентная гибридизация на месте. Это цитогенетический метод, который применяют для выявления и определения положения специфической последовательности ДНК на хромосомах. Для этого используют специальные зонды - нуклеозиды, соединенные с флуорофорами или некоторыми другими метками. Визуализацию связавшихся ДНК-зондов проводят при помощи флуоресцентного микроскопа.

Метод FISH позволяет изучать небольшие хромосомные перестройки, которые не идентифицируются при стандартном исследовании кариотипа. Однако, имеет один существенный недостаток. Зонды являются специфичными только к одному участку генома и, как следствие, при одном исследовании можно определить наличие или число копий только этого участка (или нескольких при использовании многоцветных зондов). Поэтому важным является правильная клиническая предпосылка, а FISH анализ может только подтвердить иди не подтвердить диагноз.

Альтернативой этому методу является хромосомный микроматричный анализ, который при такой же точности, чувствительности и специфичности определяет количество генетического материала в сотнях тысяч (и даже миллионах) точек генома, что дает возможность диагностики практически всех известных микроделеционных и микродупликационных сииндромов.

Хромосомный микроматричный анализ – молекулярно-цитогенетический метод для выявления вариаций числа копий ДНК по сравнению с контрольным образцом. При выполнении этого анализа исследу¬ются все клинически значимые участки генома, что позволяет с максимальной точностью исключить хромосомную патологию у обследуемого. Таким образом могут быть выявлены патогенные деле¬ции (исчезновение участков хромосом), дупликации (появление дополни¬тельных копий генетического материала), участки с потерей гетерозиготности, которые имеют важное значение при болезнях импринтинга, близкородственных браках, аутосомно-рецессивных заболеваниях.

Когда необходим хромосомный микроматричный анализ

  • В качестве теста первой линии для диагностики пациентов с дизморфиями, врожденными пороками развития, умственной отсталостью/задержкой развития, множественными врожденными аномалиями, аутизмом, судорогами или любым подозрением на наличие геномного дисбаланса.
  • В качестве замены кариотипа, FISH и сравнительной геномной гибридизации, если подозревается микроделеционный/микродупликационный синдром.
  • В качестве исследования для выявления несбалансированных хромосомных аберраций.
  • В качестве дополнительного диагностического исследования при моногенных заболеваниях, связанных с функциональной потерей одного аллеля (гаплонедостаточностью), особенно если при секвенировании не удается выявить патогенную мутацию, и делеция всего гена может быть причиной.
  • Для определения происхождения генетического материала при однородительских дисомиях, дупликациях, делециях.

1 тест - 400 синдромов (список)

Введение в хромосомный микроматричный анализ.

Информация для врачей

Правила забора материала для хромосомного микроматричного анализа

Содержание статьи

ВРОЖДЕННЫЕ ПОРОКИ, нарушения структуры, функций и биохимии организма, обусловленные родовыми или дородовыми причинами и приводящие к физическим либо психическим отклонениям, болезни или смерти. К дородовым причинам таких пороков относятся наследственные факторы и(или) воздействия окружающей среды на развитие зародыша. Причиной возникновения пороков во время родов могут быть травмы или инфекции. Очень низкий вес при рождении, который отражает либо недоношенность, либо недостаточность процессов развития плода и является основной причиной детской смертности и инвалидности, тоже рассматривается как врожденный порок.

Исторический аспект.

Доисторическое искусство свидетельствует, что врожденные пороки были известны с самых древних времен. Их появление внушало страх и породило множество мифов. Клинописные таблички древнего Вавилона сообщают, что врожденные уродства считались предзнаменованиями государственной важности и расшифровывались как предупреждения разгневанных богов. Существовало широко распространенное поверье, что впечатления матери во время беременности воздействуют на формирование ребенка; думали, что расщепленная (т.н. «заячья») губа – результат испуга зайцем, а деформация ног возникает после встречи с калекой. Другие поверья бывали причиной страданий и смерти матери и ребенка, так как утверждали, например, что чудовищный потомок появляется в результате плотской связи с животным.

Одно из первых наблюдений, раскрывающих природу врожденных пороков, относится к 1651 и принадлежит английскому врачу Уильяму Гарвею . Он заметил, что некоторые из пороков – результат сохранения нормального для зародыша (или плода) признака, обычно исчезающего к моменту рождения. Тем не менее только в 19 в. пороки развития были тщательно изучены, а 20 в. ознаменовался развитием генетических исследований, и полученные знания заменили фантастические, часто пагубные суеверия прошлого; впервые возникли методы предупреждения и лечения некоторых из этих тяжелых нарушений.

ПРИЧИНЫ ВРОЖДЕННЫХ ПОРОКОВ

Наследственность.

Некоторые врожденные пороки наследуются так же, как другие признаки. Наследственная информация передается от родителей детям с помощью генов, носителями которых являются хромосомы. В норме в каждой половой клетке (сперматозоиде или яйце) находится 23 хромосомы. При оплодотворении, т.е. слиянии сперматозоида и яйцеклетки, воссоздается нормальный генетический набор из 46 хромосом. 22 из 23 хромосом репродуктивной клетки – аутосомы, т.е. они не определяют пол, а одна – либо X-, либо Y-половая хромосома. Сперматозоид несет либо X-, либо Y-, яйцеклетка – только X-хромосому. Оплодотворение яйцеклетки сперматозоидом с Y-хромосомой дает потомка мужского пола, с X-хромосомой – женского.

Многие наследственные признаки и их нарушения соответствуют статистически предсказуемым типам наследования, называемым менделевскими – в честь их первооткрывателя Грегора Менделя. Менделевское наследование – наиболее понятный способ генетической передачи врожденных пороков. Последние могут передаваться либо по доминантному, либо по рецессивному типу наследования.

Генотип каждого из родителей несет два варианта (аллеля) гена, определяющего данный признак, а ребенок от каждого из родителей получает по одному аллелю. Проявление аномального признака как доминантного возникает тогда, когда ребенок наследует от одного из родителей дефектный ген, доминирующий над нормальным вариантом от другого родителя. Родитель с таким доминантным геном всегда имеет соответствующее нарушение (хотя, возможно, выраженное в слабой форме). У ребенка есть 50%-ная вероятность получить данное нарушение в зависимости от того, нормальный или дефектный ген будет ему передан больным родителем. Болезнь Геттингтона (прогрессирующее поражение центральной нервной системы) и ахондропластическая карликовость (отставание роста костей) – примеры доминантного типа наследования.

Наследование рецессивного признака приводит к выраженному нарушению у ребенка в том случае, когда оба родителя несут один и тот же дефектный ген (вместе с нормальным геном для данного признака), но клинического проявления заболевания у них нет. Каждый родившийся ребенок будет иметь 25%-ную вероятность не унаследовать дефектный ген ни от одного из родителей, 50%-ную вероятность быть его носителем (обладая только одним дефектным геном) и 25%-ную вероятность унаследовать его в «двойной дозе» (два дефектных гена), таким образом наследуя заболевание. Серповидноклеточная анемия, вызываемая дефектом в молекуле гемоглобина (см . АНЕМИЯ СЕРПОВИДНОКЛЕТОЧНАЯ) , – пример рецессивно наследуемой болезни. Другими примерами могут служить талассемия (еще одна форма анемии, встречающаяся в основном у лиц средиземноморского и азиатского происхождения), а также болезнь Тея – Сакса – нарушение обмена веществ, приводящее к смерти в раннем детском возрасте и проявляющееся в основном в семьях евреев, выходцев из Восточной Европы.

Расстройства, подобные рассмотренным выше, вызываются аутосомным геном (расположенным не на половых хромосомах), и потому их называют аутосомными заболеваниями. Другую группу составляют т.н. сцепленные с X-хромосомой, или сцепленные с полом, расстройства; они определяются дефектным геном, расположенным на X-хромосоме. Поскольку женщины в норме имеют две X-хромосомы, мать может быть носителем дефектного, сцепленного с X-хромосомой рецессивного гена и в то же время быть здоровой. У мужчин только одна X-хромосома, и из-за отсутствия второй X-хромосомы с ее компенсирующим эффектом у них почти всегда проявляется действие дефектного гена. У каждого ребенка существует 50%-ный шанс унаследовать дефектный ген от матери-носителя. Женщины, наследуя такой ген, становятся носителями, а у мужчин развивается заболевание. Больной отец не может передать сыновьям дефектный ген, так как они наследуют от него Y-хромосому, но все дочери, получившие его X-хромосому, будут носителями. Цветовая слепота и гемофилия (заболевание, при котором нарушено свертывание крови) представляют собой X-сцепленные рецессивные нарушения. При другом X-сцепленном заболевании, называемом синдромом ломкой X-хромосомы, наблюдается различная степень умственной отсталости. Мужчины поражаются им чаще и в более тяжелой форме.

Генетически обусловленные врожденные пороки возникают случайно в результате генных мутаций либо ошибок при репликации хромосом в процессе созревания яйцеклетки или сперматозоида. Прямым следствием мутаций являются молекулярные, качественные и количественные, изменения генного продукта. Изредка бывают полезные мутации, но большинство их вредно. Большое число случаев X-сцепленных и доминантных заболеваний возникает в результате новых мутаций. Два известных источника мутаций – ионизирующее излучение и ряд химических веществ. При развитии сперматозоида и яйцеклетки хромосомы должны очень точно дуплицироваться (удваиваться) и затем распределяться таким образом, чтобы каждая созревшая клетка получила только половину нормального набора хромосом. Однако по неясным причинам при расхождении хромосом иногда происходят ошибки, вследствие которых в зрелой половой клетке может либо недоставать хромосомы, либо оказываться лишняя. Кроме того, хромосомы могут неточно дуплицироваться или разрываться. Значительные хромосомные аномалии обычно приводят к множественным нарушениям, смертельным для эмбриона, плода или новорожденного, и в частности обнаруживаются примерно в 50% случаев выкидышей. Хромосомная аномалия лежит в основе одного из наиболее распространенных врожденных пороков, а именно синдрома Дауна, обусловленного наличием лишней 21-й хромосомы и проявляющегося умственной и физической отсталостью и рядом других признаков (см . ДАУНА СИНДРОМ) .

Вторая по частоте причина врожденной умственной отсталости – это хромосомная аномалия, известная как ломкая X-хромосома. Дефект в строении таких X-хромосом обнаруживается на конце длинного плеча, который приобретает вид стебелька с каплевидным утолщением; тонкий стебелек часто обламывается при подготовке к микроскопированию и потому называется нестабильным участком (сайтом), а сама хромосома – ломкой (фрагильной). Неизвестно, каким образом ломкая хромосома участвует в развитии патологических признаков, однако показано, что в нестабильном ее участке с повышенной частотой повторяется определенная последовательность оснований ДНК (цитозин-гуанин-гуанин). Значение подобных повторов неясно.

Синдром ломкой X-хромосомы наследуется как рецессивный признак, т.е. его эффект может быть блокирован или скрыт присутствием нормальной X-хромосомы. У мужчин, поскольку у них всего одна X-хромосома, синдром ломкой X-хромосомы проявляется полностью – умственной отсталостью, увеличенными яичками, торчащими ушами и выступающим вперед подбородком. У женщин, с их двумя X-хромосомами, присутствие одной ломкой не должно сказываться, но, что удивительно, примерно треть женщин-носителей дефектной хромосомы проявляет некоторую умственную отсталость. Но даже если у них нормальный интеллект, женщины-носители имеют 50%-ную вероятность передать дефектную хромосому каждому из своих детей.

Встречаются случаи, когда в клетках эмбриона имеется только одна X-хромосома и отсутствует Y-хромосома; в результате рождается ребенок женского пола с синдромом Тернера. В других случаях оплодотворенная яйцеклетка (зигота) содержит одну (или более) лишнюю X-хромосому наряду с Y-хромосомой; это приводит к рождению ребенка мужского пола с синдромом Клайнфельтера. Для таких хромосомных аномалий характерны половое недоразвитие, стерильность, нарушение процессов развития и роста, иногда умственная отсталость.

Изредка лишняя хромосома возникает не в сперматозоиде или яйцеклетке, а у эмбриона на ранней стадии его развития – как результат неправильного расхождения какой-то пары хромосом в процессе клеточного деления. Все клетки, происходящие от появившейся дефектной клетки, будут иметь лишнюю хромосому, и степень воздействия данного нарушения на индивида во многом зависит от того, сколь рано в ходе развития произошла ошибка. Такое отклонение от нормы, при котором клетки имеют разное количество хромосом, называют мозаицизмом. Мозаицизм выявляется у части женщин с синдромом Тернера, но очень редко встречается при синдроме Клайнфельтера.

Внешние воздействия.

После того как в 1960-х годах было обнаружено, что лекарство талидомид явилось причиной тяжелых врожденных пороков, стало ясно: многие лекарства могут преодолевать плацентарный барьер и воздействовать на эмбрион или плод. Именно в ранний эмбриональный период формируется большинство структур организма (после восьмой недели эмбрион называют плодом). Хотя основные физические пороки возникают начиная со второй и до восьмой недели беременности, отдельные аномалии глаз, внутреннего уха и нервной системы могут проявиться и позже. До второй недели воздействие вредных веществ блокирует имплантацию эмбриона в маточную стенку либо столь сильно влияет на него, что развитие не может продолжаться .

Дети матерей, употреблявших в больших количествах алкоголь во время беременности, обнаруживают признаки умственных и физических дефектов, которые известны как алкогольный синдром плода. У женщин, курящих во время беременности, возникает повышенный риск выкидыша, рождения мертвого ребенка либо ребенка с низким весом, который имеет значительно более высокий шанс стать инвалидом или умереть, чем новорожденный с нормальным весом.

Самопроизвольные аборты, низкий вес при рождении и другие проблемы связаны и с недостаточным питанием матери. Несмотря на то что плод защищен от многих инфекций, некоторые из них могут вызвать серьезные дефекты в зависимости от стадии развития, во время которой имела место инфекция. Так, воздействие вируса краснухи на плод приводит к порокам сердца, слепоте, глухоте и другим нарушениям (см. КРАСНУХА) . Некоторые инфекции поражают плод до или во время родов, что бывает причиной врожденного заболевания или смерти. Среди них – цитомегаловирусная инфекция и токсоплазмоз (оба часто протекают легко и незаметно для матери), а также болезни, передаваемые половым путем, в частности гонорея, хламидиоз, генитальный герпес и сифилис.

Эмбрион или плод может пострадать от повышенного уровня ионизирующего излучения. Помимо обычного радиационного фона наиболее часто встречающийся источник облучения – рентгенодиагностика. Считается, что современные методы диагностики не опасны для эмбриона и плода. Тем не менее, когда это возможно, необходимо закрывать тазовую область у женщин репродуктивного возраста при рентгеноскопии и, если нет чрезвычайных показаний, назначать рентгенологическое исследование через неделю или десять дней после менструации, так как в этот период беременность маловероятна. Высказывались сомнения по поводу безопасности неионизирующего излучения микроволновых печей, дисплеев компьютеров и диагностического ультразвукового исследования. На настоящий момент эти опасения не подтвердились ни с теоретической точки зрения, ни статистическими свидетельствами.

Многофакторные причины.

Большинство врожденных пороков нельзя объяснить какой-либо одной генетической причиной или одним фактором окружающей среды. Предполагается, что они представляют собой результат или взаимодействия многих генов (полигенная причинность), или совместного действия генов и факторов окружающей среды (полифакторная причинность).

ЛЕЧЕНИЕ

Очень немногие врожденные пороки поддаются полному излечению, но в результате терапии развитие большинства из них может быть замедлено или остановлено, а возникший дефект иногда даже частично исправлен. Такие структурные пороки, как «заячья» губа и расщепленное нёбо («волчья пасть»), косолапость, различные пороки сердца и пищеварительного тракта исправляют хирургическим путем. В настоящее время возможна и пересадка различных органов, включая почки, печень, роговицу и – при лечении иммунной недостаточности – костный мозг. Разрабатываются более эффективные методы протезирования при неполноценных или отсутствующих конечностях. Реабилитационные и специальные образовательные методы могут компенсировать многие умственные и физические аномалии и недостатки органов чувств. Некоторые врожденные нарушения обмена веществ можно лечить диетой или лекарствами.

Дети с врожденным гипотиреозом развиваются нормально, если им вовремя начать введение гормона щитовидной железы. Специальная диета может спасти большинство детей с таким тяжелым пороком обмена веществ, как фенилкетонурия, от разрушительных поражений мозга (см. ФЕНИЛКЕТОНУРИЯ) . При наследственном рахите с успехом применяют витамин D и фосфатные добавки. Заболевания, возникающие из-за избыточного накопления жидкости, в частности гидроцефалия и блокада мочевого тракта, поддаются хирургическому лечению, проводимому в отдельных случаях еще до рождения.

Достигнуты успехи в лечении во внутриутробном периоде и нехирургическими методами. Нарушения в работе сердца корректируют с помощью лекарств, которые получает мать, а при нарушениях обмена веществ, связанных с витаминной недостаточностью, матери назначают большие дозы нужного витамина. В настоящее время созданы вакцины для предупреждения врожденных пороков вследствие краснухи и резус-несовместимости, возникающей, когда антитела резус-отрицательной матери разрушают красные кровяные клетки ее резус-положительного плода (см . КРОВЬ) .

ВЫЯВЛЕНИЕ И ДИАГНОЗ

С помощью биохимических методов выявляют целый ряд генетических заболеваний новорожденных. Некоторые из них, включая гипотиреоз, фенилкетонурию и галактоземию (нарушение углеводного обмена), могут быть определены путем анализа крови, взятой из пятки новорожденного. Предпринятое вовремя медикаментозное лечение или специальная диета обеспечивает больным детям нормальное развитие.

Для супружеских пар, предполагающих, что у ребенка может оказаться генетическое заболевание, существуют служба медико-генетического консультирования. Обычно супружеские пары хотят получить консультацию потому, что у них уже есть ребенок с врожденным пороком либо их семейный анамнез или принадлежность к определенной этнической группе предполагает риск рождения ребенка с определенным заболеванием. Однако наибольший риск связан с возрастом матери – чем она старше, тем больше вероятность, что у ребенка будут хромосомные нарушения типа синдрома Дауна. Многие врожденные пороки в настоящее время могут быть безопасно и точно диагностированы во внутриутробном периоде .

Ультразвуковое изображение плода дает представление о нарушениях развития и структурных дефектах, а также обеспечивает важную информацию о ходе беременности и предстоящих родах, в том числе о сроке беременности, наличии более чем одного плода, положении плаценты, возможной сердечной недостаточности у плода и положении его в матке. Амниоцентез, т.е. прокол плодного пузыря и получение образца околоплодных вод (жидкости, окружающей плод) для анализа, позволяет выявить хромосомные аномалии, некоторые пороки развития и ок. 100 нарушений обмена веществ. Эндоскопия плода, осуществляемая путем введения в матку волоконно-оптического эндоскопа, представляет собой более трудное и рискованное вмешательство. Оно дает возможность осмотреть плод и взять образцы крови и тканей для диагностического исследования. Эта процедура используется также для переливания крови при резус-несовместимости.

Более 95% женщин, проходящих дородовые тесты, могут быть уверены, что у плода нет предполагаемого заболевания. Сообщаемая родителям информация резко снижает число абортов. В то же время сведения о наличии у плода определенных нарушений позволяют врачам ко времени родов подготовиться к мероприятиям, необходимым для спасения жизни новорожденного и уменьшения вредных последствий его порока, а также предуведомить родителей о дополнительных мерах, которые нужны для сохранения здоровья ребенка.

Частота некоторых врожденных пороков

ЧАСТОТА НЕКОТОРЫХ ВРОЖДЕННЫХ ПОРОКОВ

Заболевание

Частота при рождении

Тип наследования 1

Наследственные заболевания
Ахондропластическая карликовость 1/10 000
Муковисцидоз 1/2000, США, белые
Галактоземия 1/30 000–1/40 000
Гемофилия А 1/2500, мужчины
Семейная гиперхолестеринемия 1/500
Серповидноклеточная анемия 1/625, афроамериканцы
Болезнь Тея – Сакса 1/3600, евреи (ашкенази)
Нейрофиброматоз 1/3000
Хромосомные аномалии
Синдром Клайнфельтера 1/500, мужчины
Синдром Тернера 1/10 000, женщины
Синдром Дауна 1/800
Врожденные недоразвития
«Волчья пасть» 1/2000
«Заячья» губа 1/1150
Косолапость 2 1/400
Врожденный вывих бедра 2 1/400
Недоразвитие конечностей 1/2500
Расщелина позвоночника 3 1/2000
Пороки сердца 1/200
1 АД – аутосомно-доминантное; АР – аутосомно-рецессивное; XР – X-сцепленное рецессивное.
2 Без пороков нервной системы.
3 Без анэнцефалии, т.е. отсутствия всего или большей части мозга. Расщелина позвоночника представляет собой его неполное срастание.

Зародышевым (эмбриональным) развитием человека является ранний период развития до 8 недель. В течение этого времени из оплодотворенной яйцеклетки зарождается тело, которое обладает всеми основными признаками человека. После восьми недель развития внутриутробный организм называется плодом, а период развития плодным.

Эмбриональное развитие человека делится на несколько периодов. Рассмотрим этапы развития эмбриона человека. Первый период одноклеточного зародыша (зиготы, обладающей всеми свойствами обеих половых клеток) протекает с момента оплодотворения яйцеклетки, в которой находятся два ядра. Каждое ядро содержит половинный набор хромосом (23 хромосомы папы и 23 хромосомы мамы).

Человеческий эмбрион начинает медленно продвигаться по фаллопиевой трубе, подгоняемый бахромками трубы и током жидкости в ней. Главной целью его движения является матка.

Впервые деление одноклеточного эмбриона человека происходит через 30 часов после оплодотворения. Затем деление происходит по одному дроблению в сутки.

Через четверо суток эмбрион приобретает вид комочка, который состоит примерно из 8-12 клеток. Далее деление клеток человеческого зародыша будет происходить все быстрее и быстрее.

В этот период матка начинает подготавливаться к принятию зародыша. Слизистая оболочка матки утолщается и становится рыхлой. В ней начинает появляться множество дополнительных кровеносных сосудов.

Клетки эмбриона человека начинают выделять ферменты, которые разрушают слизистую оболочку матки. Специальные ворсинки на поверхности зародыша начинают быстро увеличиваться, прорастать в ткань матки. На имплантацию человеческого зародыша необходимо 40 часов. Появляется новый орган, называющийся плацента или детское место. Плацента - это орган, который связывает организм матери с зародышем, а также обеспечивает питание эмбриона.

К концу второй недели длина человеческого зародыша составляет 1,5 мм.

Развитие эмбриона человека происходит в соответствии с четко выстроенным планом.

На четвертой неделе развития начинают появляться зачатки большинства органов и тканей будущего человека (почки, кишечник, хрящи остевого скелета, кости, поперечнополосатая мускулатура, щитовидная железа, печень, кожные покровы, уши, глаза).

На пятой неделе длина человеческого зародыша составляет около 7,5 мм. На этом сроке при помощи (ультразвуковое исследование) можно увидеть сокращения сердца эмбриона.

В период 32 дней развития у эмбриона человека начинают появляться зачатки рук, ближе к 40 дню - зачатки ног.

В конце своего развития зародыш уже становится длиной около 3-4 см (от темени до копчика). В это время заканчивается закладка всех основных органов зародыша, он приобретает все признаки человека, как во внешнем облике, так и во внутренней организации.

Министерство образования Российской Федерации

Управление образования администрации города Чебоксары

МОУ «Кадетская Школа»

Реферат на тему:

Развитие зародыша человека

Выполнил: курсант 9 «А» класса

Иванов К.

Проверила: Нардина С.А.

Чебоксары 2004 г.

На что похож ребенок в самом начале своей жизни – в животе матери?

Это яйцо, иными словами - клетка. Она состоит, как и все клетки человеческого тела, из капельки вещества – протоплазмы с ядром посередине. Это очень крупная клетка практически видимая невооруженным глазом, размером в одну десятую миллиметра.

Это происходит в результате соединения двух клеток: мужской клетки, или сперматозоида, и женской, яйцеклетки. Яйцеклетка – крупная клетка округлой формы. Что касается сперматозоида, он в 30 или 40 раз меньше – правда, без учета его длинного колеблющегося хвоста, благодаря которому сперматозоид перемещается. При контакте с яйцеклеткой сперматозоид теряет свой хвост. А его ядро проникает внутрь яйцеклетки. Оба ядра сливаются, происходит оплодотворение яйцеклетки; отныне она становится яйцом. Каждая из клеток, образующих яйцо несет в себе признаки одного из родителей. Носителями этих признаков являются маленькие, похожие на палочки образования, содержащиеся в ядрах всех клеток и называемые хромосомами. Ядро каждой клетки человеческого тела содержит 46 хромосом: 23 – от отца и 23 – от матери. Однотипные хромосомы отца и матери образуют пару. Каждый из нас в любой клетке тела имеет 23 пары хромосом, присущих только ему и определяющих его индивидуальные признаки; вот почему определенные черты нашей внешности, ума или характера делают нас похожими на отца и мать, на бабушек и дедушек или других родственников.

Пол ребенка является результатом случайного подбора хромосом. Вначале обратим внимание на внешний вид хромосом: их размер и форма различны, но в каждой нормальной клетке имеются по крайней мере 44 хромосомы, каждая из которых имеет подобную себе. Сгруппированные по две, они образуют 22 пары. Их классифицируют по размеру: самая крупная имеет номер 1, а самая маленькая – номер 22. 23 – я пара стоит особняком. У женщины она, как и все остальные, образована двумя подобными хромосомами, обозначенными буквой икс (X). А у мужчин в 23 – й паре находится лишь одна X-хромосома вместе с меньшей по размеру, обозначенной буквой игрек (Y).

В организме родителей яйцеклетка или сперматозоид являются клетками, содержащими лишь половину хромосом, то есть по 23 каждая. Таким образом, все яйцеклетки однотипны: все они имеют X-хромосому. Сперматозоиды же бывают двух типов: одни из них имеют под номером 23 X- хромосому, другие - Y- хромосому. Если яйцеклетка по воле случая соединяется со сперматозоидом, несущим X- хромосому, яйцо разовьется в девочку, а если случай приводит к оплодотворению яйцеклетки сперматозоидом, содержащим Y-хромосому, то яйцо развивается в мальчика. Таким образом, определение пола происходит во время оплодотворения.

Теоретически узнать пол ребенка можно было бы именно с этого момента, если бы в нашем распоряжении имелись технические средства, позволяющие наблюдать яйцо без риска его повредить. Возможно наступит день, когда случайность уступит место науке и родители будут сами выбирать пол своего ребенка, в любом случае это произойдет лишь при условии разделения в составе спермы X- и Y- сперматозоидов. Едва образовавшись, яйцо начинает делиться на две, четыре, восемь, шестнадцать и т.д. клеток. По истечении нескольких дней клетки функционально специализируются: одни - на формирования органов чувств, другие - кишечника, третьи – половых органов и т.п. Именно Y-хромосома сообщает половым клеткам, что им предстоит развиваться по мужскому типу. Внешние признаки пола становятся заметны к началу четвертого месяца беременности. Но на хромосомном уровне, определяющем и внешние его проявления, пол существует с момента оплодотворения. Вот почему в некоторых случаях можно узнать пол ребенка уже в начале беременности (на втором- третьем месяце), благодаря хромосомным исследованиям некоторых клеток яйца (так называемая пункция трофобласта и амниоцентез), или благодаря своего рода радару, который с помощью ультразвука позволяет увидетьмаленький половой член зародыша в материнской матке.

Оплодотворенное яйцо продвигается по маточной трубе, одновременно делится и превращается в многоклеточный зародыш, который через 4-5 дней попадает в полость матки. В течение 2 дней зародыш остается в матке свободным, затем погружается в ее слизистую оболочку и прикрепляется к ней. Начинается зародышевый период внутриутробного развития. Из части клеток формируются оболочки. Наружная оболочка имеет ворсинки с капиллярами. Через ворсинки происходит питание и дыхание зародыша. Внутри ворсинчатой оболочки имеется еще одна, тонкая и прозрачная, как целлофан. Она образует пузырь. В жидкости пузыря плавает зародыш. Эта оболочка предохраняет зародыш от ударов и шумов.

К концу 2-го месяца внутриутробного развития ворсинки сохраняются только на той стороне зародышевой оболочки, которая обращена к матке. Эти ворсинки разрастаются и разветвляются, погружаясь в слизистую матки, обильно снабженную кровеносными сосудами. Развивается плацента в виде диска, прочно укрепленного в слизистой матки. С этого момента начинается плодный период внутриутробного развития.

Через стенку кровеносных капилляров и ворсинок плаценты идет обмен газами и питательными веществами между организмом матери и ребенка. Кровь матери и плода никогда не смешивается. С 4-го месяца беременности плацента, выполняя роль железы внутренней секреции, выделяет гормон. Благодаря ему в период беременности слизистая матки не отслаивается, не возникают менструальные циклы и плод сохраняется в матке в течение всей беременности.

При овуляции и оплодотворении двух или более яйцеклеток образуются два или более плода. Это будущие близнецы. Они не очень похожи друг на друга. Иногда два плода развиваются из одной яйцеклетки, часто они имеют одну плаценту. Такие близнецы всегда одного пола и очень похожи друг на друга

Зародыш в матке быстро развивается. К концу первого месяца внутриутробного развития голова зародыша составляет 1/3 длины тела, появляются контуры глаз, на 7-ой неделе можно различить пальцы. Через 2 месяца зародыш становятся похожими на человека, хотя длина его в это время составляет 3 см.

К 3 месяцам внутриутробного развития формируются почти все органы. К этому времени можно определить пол будущего ребенка. К 4,5 месяцам прослушиваются сокращения сердца плода, частота которых в 2 раза больше, чем у матери. В этот период плод быстро растет и к 5 месяцам весит около 500 г, а к моменту рождения 3-3,5 кг.

СПИСОК ЛИТЕРАТУРЫ:

1.Энциклопедия Блинова И.И. и Карзова С.В. стр.367-369

2.Учебник по биологии для 9 класса, авт.Цузмер А.М., Петришина О.Л. стр.167-172

Состав зародыша человека в первые дни существования

Оплодотворение яйца – стр. 3

Образование плаценты - стр.3

Развитие зародыша – стр.4

Список литературы – стр. 5


Агентов из плаценты к эмбриону внесосудистым путем и выполняет, таким образом, защитную функцию. На основании изложенного можно отметить основные особенности ранних стадий развития зародыша человека: 1) асинхронный тип полного дробления и образование “светлых” и “темных” бластомеров; 2) раннее обособление и формирование внезародышевых органов; 3) раннее образование амниотического пузырька и...


Период зародыш представляет собой двухслойный щиток, состоящий из двух листков: наружного зародышевого (эктодерма), и внутреннего зародышевого (энтодерма). Рис.2. Положение эмбриона и зародышевых оболочек на разных стадиях развития человека: А - 2-3 нед; Б - 4 нед: 1 - полость амниона; 2 - тело эмбриона; 3 - желточный мешок; 4 - трофоласт; В - 6 нед; Г - плод 4-5 мес: 1 - тело эмбриона...

Проблема была раскрыта Энгельсом в работе "Роль труда в процессе превращения обезьяны в человека", опубликованной в 1896 г., хотя она была написана вскоре после выхода в свет "Происхождения человека" Дарвина. В то время наука располагала относительно скудными данными об ископаемых предках человека. Позднее многочисленные находки остатков костей и орудий труда ископаемых людей блестяще подтвердили...

Пятью мозговыми пузырями (полостями с жидкостью); имеются также выпуклые глаза с хрусталиками и пигментированной сетчаткой. В период от пятой до восьмой недели завершается собственно эмбриональный период внутриутробного развития. В течение этого времени эмбрион вырастает от 5 мм до примерно 30 мм и начинает напоминать человека. Его внешность изменяется следующим образом: 1) уменьшается изгиб...